608 research outputs found

    European Community Multi-Center Trial "Fetal ECG Analysis During Labor": ST plus CTG analysis

    Get PDF
    This report form part of the European Community Multi-Center Trial "Fetal ECG Analysis during Labor". Aim of this prospective trial was to identify changes in the fetal ECG waveform with cases of verified fetal hypoxia. In this paper we also report on the use of a newly developed automatic system for identification of ST waveform changes (ST Log). All ECG were recorded with the STAN recorder (Neoventa Medical AB, Gothenburg, Sweden). The ECG information was not displayed during labor in order not to influence the clinical management. This report includes data from 320 cases and include six cases of fetal intrapartum hypoxia. Twenty seven cases showed changes in ST waveform. All five cases with the most marked ST change (a rise in T/QRS of >0.10 units and lasting more then 10 minutes) had signs of ongoing intrapartum hypoxia. Six out of six cases with evidence of intrapartum asphyxia, showed ST changes. On the basis of our multi-center trial it appears that the combined analysis of CTG and ST waveform changes provides an accurate way to identify adverse events during labor. The work is continuing with a new STAN recorder developed by Neoventa Medical in Goteborg and currently being tested in a Swedish randomized, controlled multi-center trial

    Empirical evaluation of spin-on-glass-layers on steel surfaces by wear tests

    Get PDF
    Dies and moulds with high precision surfaces are being used in various branches, e.g. in the plastic industry where the surface finish are conventionally performed by manual polishers. With ever increasing demands of shorter lead times and reduced costs, efforts have been made to automate this finishing process. This paper presents an empirical study performed to test durability properties of SOG (spin-on-glass)-layers on steel surfaces. The results showed that the thin coating last longer than the thicker ones, and that the harder coatings withstood wear significantly better than the steel reference samples thus motivating further investigations

    Flight Speeds among Bird Species: Allometric and Phylogenetic Effects

    Get PDF
    Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)1/6 and (wing loading)1/2 among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, Ue) of 138 species, ranging 0.01–10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of Ue in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in Ue. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in Ue. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading

    Biomarkers of neuronal damage in saturation diving-a controlled observational study

    Get PDF
    PURPOSE: A prospective and controlled observational study was performed to determine if the central nervous system injury markers glial fibrillary acidic protein (GFAp), neurofilament light (NfL) and tau concentrations changed in response to a saturation dive. METHODS: The intervention group consisted of 14 submariners compressed to 401 kPa in a dry hyperbaric chamber. They remained pressurized for 36 h and were then decompressed over 70 h. A control group of 12 individuals was used. Blood samples were obtained from both groups before, during and after hyperbaric exposure, and from the intervention group after a further 25-26 h. RESULTS: There were no statistically significant changes in the concentrations of GFAp, NfL and tau in the intervention group. During hyperbaric exposure, GFAp decreased in the control group (mean/median - 15.1/ - 8.9 pg·mL-1, p < 0.01) and there was a significant difference in absolute change of GFAp and NfL between the groups (17.7 pg·mL-1, p = 0.02 and 2.34 pg·mL-1, p = 0.02, respectively). Albumin decreased in the control group (mean/median - 2.74 g/L/ - 0.95 g/L, p = 0.02), but there was no statistically significant difference in albumin levels between the groups. In the intervention group, haematocrit and mean haemoglobin values were slightly increased after hyperbaric exposure (mean/median 2.3%/1.5%, p = 0.02 and 4.9 g/L, p = 0.06, respectively). CONCLUSION: Hyperbaric exposure to 401 kPa for 36 h was not associated with significant increases in GFAp, NfL or tau concentrations. Albumin levels, changes in hydration or diurnal variation were unlikely to have confounded the results. Saturation exposure to 401 kPa seems to be a procedure not harmful to the central nervous system. TRIAL REGISTRATION: ClinicalTrials.gov NCT03192930

    Proving Type Class Laws for Haskell

    Full text link
    Type classes in Haskell are used to implement ad-hoc polymorphism, i.e. a way to ensure both to the programmer and the compiler that a set of functions are defined for a specific data type. All instances of such type classes are expected to behave in a certain way and satisfy laws associated with the respective class. These are however typically just stated in comments and as such, there is no real way to enforce that they hold. In this paper we describe a system which allows the user to write down type class laws which are then automatically instantiated and sent to an inductive theorem prover when declaring a new instance of a type class.Comment: Presented at the Symposium for Trends in Functional Programming, 201
    corecore