5 research outputs found

    Ecological and genetic relationships of the Forest-M form among chromosomal and molecular forms of the malaria vector Anopheles gambiae sensu stricto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae sensu stricto</it>, one of the principal vectors of malaria, has been divided into two subspecific groups, known as the M and S molecular forms. Recent studies suggest that the M form found in Cameroon is genetically distinct from the M form found in Mali and elsewhere in West Africa, suggesting further subdivision within that form.</p> <p>Methods</p> <p>Chromosomal, microsatellite and geographic/ecological evidence are synthesized to identify sources of genetic polymorphism among chromosomal and molecular forms of the malaria vector <it>Anopheles gambiae s.s</it>.</p> <p>Results</p> <p>Cytogenetically the Forest M form is characterized as carrying the standard chromosome arrangement for six major chromosomal inversions, namely 2La, 2Rj, 2Rb, 2Rc, 2Rd, and 2Ru. Bayesian clustering analysis based on molecular form and chromosome inversion polymorphisms as well as microsatellites describe the Forest M form as a distinct population relative to the West African M form (Mopti-M form) and the S form. The Forest-M form was the most highly diverged of the <it>An. gambiae s.s</it>. groups based on microsatellite markers. The prevalence of the Forest M form was highly correlated with precipitation, suggesting that this form prefers much wetter environments than the Mopti-M form.</p> <p>Conclusion</p> <p>Chromosome inversions, microsatellite allele frequencies and habitat preference all indicate that the Forest M form of <it>An. gambiae </it>is genetically distinct from the other recognized forms within the taxon <it>Anopheles gambiae sensu stricto</it>. Since this study covers limited regions of Cameroon, the possibility of gene flow between the Forest-M form and Mopti-M form cannot be rejected. However, association studies of important phenotypes, such as insecticide resistance and refractoriness against malaria parasites, should take into consideration this complex population structure.</p

    Molecular survey of pyrethroid resistance mechanisms in Mexican field populations of Rhipicephalus (Boophilus) microplus

    Get PDF
    Susceptibility to synthetic pyrethroids (SP´s) and the role of two major resistance mechanisms were evaluated in Mexican Rhipicephalus microplus tick populations. Larval packet test (LPT), knock-down (kdr) PCR allele-specific assay (PASA) and esterase activity assays were conducted in tick populations for cypermethrin, flumethrin and deltamethrin. Esterase activity did not have a significant correlation with SP´s resistance. However a significant correlation (p < 0.01) was found between the presence of the sodium channel mutation, and resistance to SP´s as measured by PASA and LPT respectively. Just over half the populations (16/28) were cross-resistant to flumethrin, deltamethrin and cypermethrine, 21.4% of the samples (6/28) were susceptible to all of the three pyrethroids 10.7 of the samples (3/28) were resistant to flumethrin, 3.4 of the samples (1/28) were resistant to deltamethrin only and 7.1% (2/28) were resistant to flumethrin and deltamethrin. The presence of the kdr mutation correlates with resistance to the SP´s as a class. Target site insensitivity is the major mechanism of resistance to SP´s in Mexican R. microplus field strains, involving the presence of a sodium channel mutation, however, esterase-based, other mutations or combination of mechanisms can also occur
    corecore