5 research outputs found

    Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations.

    Get PDF
    PurposeThe phenotypic manifestations of cerebral cavernous malformation disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase-mediated hyperpermeability, a potential therapeutic target, has not been established.MethodsWe analyzed PDCD10 small interfering RNA-treated endothelial cells for stress fibers, Rho kinase activity, and permeability. Rho kinase activity was assessed in cerebral cavernous malformation lesions. Brain permeability and cerebral cavernous malformation lesion burden were quantified, and clinical manifestations were assessed in prospectively enrolled subjects with PDCD10 mutations.ResultsWe determined that PDCD10 protein suppresses endothelial stress fibers, Rho kinase activity, and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrated robust Rho kinase activity in murine and human cerebral cavernous malformation vasculature and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared with the more common KRIT1 and CCM2 familial and sporadic cerebral cavernous malformation, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features, including scoliosis, cognitive disability, and skin lesions, unrelated to lesion burden or bleeding.ConclusionThese findings define a unique cerebral cavernous malformation disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling, and the design of trials.Genet Med 17 3, 188-196

    Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations

    No full text
    PURPOSE: The phenotypic manifestations of cerebral cavernous malformation (CCM) disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase (ROCK) mediated hyperpermeability, a potential therapeutic target, has not been established. METHODS: We analyze PDCD10-siRNA treated endothelial cells for stress fibers, ROCK activity and permeability. ROCK activity is assessed in CCM lesions. Brain permeability and CCM lesion burden is quantified, and clinical manifestations are assessed in prospectively enrolled subjects with PDCD10 mutations. RESULTS: We determine that PDCD10 protein suppresses endothelial stress fibers, ROCK activity and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrate robust ROCK activity in murine and human CCM vasculature, and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared to the more common KRIT1 and CCM2 familial and sporadic CCM, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features including scoliosis, cognitive disability and skin lesions, unrelated to lesion burden or bleeding. CONCLUSION: These findings define a unique CCM disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling and the design of trials
    corecore