1 research outputs found

    Increased myeloid cell hypoxia-inducible factor-1 delays obliterative airway disease in the mouse

    Get PDF
    BACKGROUND: Obliterative bronchiolitis after lung transplantation is characterized by chronic airway inflammation leading to the obliteration of small airways. Hypoxia-inducible factor-1 (HIF-1) is a master regulator of cellular responses to hypoxia and inflammation. The Von Hippel-Lindau protein (pVHL) drives the degradation of oxygen-sensitive subunit HIF-1 alpha that controls the activity of HIF-1. We investigated the effect of myeloid cell targeted gene deletion of HIF-1 alpha or its negative regulator pVHL on the development of obliterative airway disease (OAD) in the recipients of tracheal allografts, a mouse model for obliterative bronchiolitis after lung transplantation. METHODS: Tracheal allografts were heterotopically transplanted from BALB/c donor mice to fully major histocompatibility complex mismatched recipient mice with HIF-1 alpha or VHL gene deletion in myeloid cells. The recipients were left non-immunosuppressed or received tacrolimus daily. Histologic, immunohistochemical, and real-time reverse transcription polymerase chain reaction analyses were performed at 3, 10, and 30 days. RESULTS: In the absence of immunosuppression, myeloid cell-specific VHL deficiency of the recipient mice improved epithelial recovery, decreased inflammatory cell infiltration and expression of pro-inflammatory cytokines, increased regulatory forkhead box P3 messenger RNA expression, and reduced OAD development in tracheal allografts. In the presence of tacrolimus immunosuppression, loss of HIF-1 alpha activity in myeloid cells of the recipient by HIF-1 alpha gene deletion accelerated OAD development in mouse tracheal allografts. CONCLUSIONS: Activity of the HIF-pathway affects the development of allograft rejection, and our results suggest that myeloid cell-specific VHL-deficiency that potentially increases HIF-activity decreases allograft inflammation and the subsequent development of OAD in mouse tracheal allografts. (C) 2016 International Society for Heart and Lung Transplantation. All rights reserved.Peer reviewe
    corecore