15 research outputs found

    Nanoscale Manipulation, Probing, and Assembly Using Microfluidic Flow Control

    Get PDF
    Nanoparticles have unique properties that can be beneficial in fields ranging from quantum information to biological sensing. To take advantage of some of some of these benefits, techniques are required that can select single particles and place them at desired locations with nanoscale precision. This capability allows for bottom-up assembly of nanoparticle systems and facilitates development of improved tools for probing nanoscale physics. Current manipulation approaches are inadequate for positioning nanoparticles such as single quantum dots. Quantum dots can act as single photon sources, and are useful for applications in nanophotonics and quantum optics. In this thesis, I present a technique for manipulation of single quantum dots and other nano-objects. Using this technique, I demonstrate nanoparticle manipulation, assembly, and probing with nanoscale precision. The nanomanipulation approach I introduce employs electroosmotic flow to position colloidal nanoparticles suspended in an aqueous system. Single quantum dot manipulation is demonstrated with a precision better than 50 nm for holding times of up to one hour. This technique is useful for studying the behavior of single quantum dots and their interactions with the environment in real time. A fluid chemistry was developed for the deterministic immobilization of nanoparticles along a two-dimensional surface with 130 nm precision. In addition, a technique for assembling systems of silver nanowires is demonstrated. A method for imaging the local density of optical states of silver nanowires is presented using single quantum dots as probes, achieving an imaging accuracy of 12 nm. Spontaneous emission control is accomplished simultaneously by placing the quantum dot at various locations along the wire. Together, these experiments illustrate the versatility of microfluidics for the advancement of nanoscience research and engineering

    Scalable and Robust Beam Shaping Using Apodized Fish-bone Grating Couplers

    Full text link
    Efficient power coupling between on-chip guided and free-space optical modes requires precision spatial mode matching with apodized grating couplers. Yet, grating apodizations are often limited by the minimum feature size of the fabrication approach. This is especially challenging when small feature sizes are required to fabricate gratings at short wavelengths or to achieve weakly scattered light for large-area gratings. Here, we demonstrate a fish-bone grating coupler for precision beam shaping and the generation of millimeter-scale beams at 461 nm wavelength. Our design decouples the minimum feature size from the minimum achievable optical scattering strength, allowing smooth turn-on and continuous control of the emission. Our approach is compatible with commercial foundry photolithography and has reduced sensitivity to both the resolution and the variability of the fabrication approach compared to subwavelength meta-gratings, which often require electron beam lithography.Comment: 10 pages, 6 figure

    Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal

    No full text
    International audienceMaterial systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom

    Manipulating Quantum Dots to Nanometer Precision by Control of Flow

    No full text
    We present a method for manipulating preselected quantum dots (QDs) with nanometer precision by flow control. The accuracy of this approach scales more favorably with particle size than optical trapping, enabling more precise positioning of nanoscopic particles. We demonstrate the ability to position a single QD in a 100 μm working region to 45 nm accuracy for holding times exceeding one hour and the ability to take active quantum measurements on the dynamically manipulated QD. Keywords: Quantum dots; control; electroosmotic flow; subpixel averaging; photon antibunchin

    Scanning Localized Magnetic Fields in a Microfluidic Device with a Single Nitrogen Vacancy Center

    No full text
    Nitrogen vacancy (NV) color centers in diamond enable local magnetic field sensing with high sensitivity by optical detection of electron spin resonance (ESR). The integration of this capability with microfluidic technology has a broad range of applications in chemical and biological sensing. We demonstrate a method to perform localized magnetometry in a microfluidic device with a 48 nm spatial precision. The device manipulates individual magnetic particles in three dimensions using a combination of flow control and magnetic actuation. We map out the local field distribution of the magnetic particle by manipulating it in the vicinity of a single NV center and optically detecting the induced Zeeman shift with a magnetic field sensitivity of 17.5 μT Hz<sup>–1/2</sup>. Our results enable accurate nanoscale mapping of the magnetic field distribution of a broad range of target objects in a microfluidic device

    Nanostructure-Induced Distortion in Single-Emitter Microscopy

    No full text
    Single-emitter microscopy has emerged as a promising method of imaging nanostructures with nanoscale resolution. This technique uses the centroid position of an emitter’s far-field radiation pattern to infer its position to a precision that is far below the diffraction limit. However, nanostructures composed of high-dielectric materials such as noble metals can distort the far-field radiation pattern. Previous work has shown that these distortions can significantly degrade the imaging of the local density of states in metallic nanowires using polarization-resolved imaging. But unlike nanowires, nanoparticles do not have a well-defined axis of symmetry, which makes polarization-resolved imaging difficult to apply. Nanoparticles also exhibit a more complex range of distortions, because in addition to introducing a high dielectric surface, they also act as efficient scatterers. Thus, the distortion effects of nanoparticles in single-emitter microscopy remains poorly understood. Here we demonstrate that metallic nanoparticles can significantly distort the accuracy of single-emitter imaging at distances exceeding 300 nm. We use a single quantum dot to probe both the magnitude and the direction of the metallic nanoparticle-induced imaging distortion and show that the diffraction spot of the quantum dot can shift by more than 35 nm. The centroid position of the emitter generally shifts away from the nanoparticle position, which is in contradiction to the conventional wisdom that the nanoparticle is a scattering object that will pull in the diffraction spot of the emitter toward its center. These results suggest that dielectric distortion of the emission pattern dominates over scattering. We also show that by monitoring the distortion of the quantum dot diffraction spot we can obtain high-resolution spatial images of the nanoparticle, providing a new method for performing highly precise, subdiffraction spatial imaging. These results provide a better understanding of the complex near-field coupling between emitters and nanostructures and open up new opportunities to perform super-resolution microscopy with higher accuracy

    Integrating planar photonics for multi-beam generation and atomic clock packaging on chip

    No full text
    A planar platform combining photonic integrated circuits and flip-chip bonded meta-surfaces for multi-color light projection, beam shaping, and polarization control for compact laser cooling

    Fabrication of Nanoassemblies Using Flow Control

    No full text
    Synthetic nanostructures, such as nanoparticles and nanowires, can serve as modular building blocks for integrated nanoscale systems. We demonstrate a microfluidic approach for positioning, orienting, and assembling such nanostructures into nanoassemblies. We use flow control combined with a cross-linking photoresist to position and immobilize nanostructures in desired positions and orientations. Immobilized nanostructures can serve as pivots, barriers, and guides for precise placement of subsequent nanostructures
    corecore