91 research outputs found
Base Metal Catalyzed Isocyanide Insertions
Isocyanides are diverse C1 building blocks considering their potential to react with nucleophiles, electrophiles, and radicals. Therefore, perhaps not surprisingly, isocyanides are highly valuable as inputs for multicomponent reactions (MCRs) and other one-pot cascade processes. In the field of organometallic chemistry, isocyanides typically serve as ligands for transition metals. The coordination of isocyanides to metal centers alters the electronic distribution of the isocyano moiety, and reaction pathways can therefore be accessed that are not possible in the absence of the metal. The tunable reactivity of the isocyanide functional group by transition metals has evolved into numerous useful applications. Especially palladium-catalyzed isocyanide insertion processes have emerged as powerful reactions in the past decade. However, reports on the use of earth-abundant and cheap base metals in these types of transformations are scarce and have received far less attention. In this Minireview, we focus on these emerging base metal catalyzed reactions and highlight their potential in synthetic organic chemistry. Although mechanistic studies are still scarce, we discuss distinct proposed catalytic cycles and categorize the literature according to 1) the (hetero)atom bound to and 2) the type of bonding with the transition metal in which the (formal) insertion occurs
Iodospirocyclization of Tryptamine-Derived Isocyanides:Formal Total Synthesis of Aspidofractinine
The N-iodosuccinimide-mediated spirocyclization of tryptamine-derived isocyanides to generate spiroindolenines is reported. The products contain both an imine and an imidoyl iodide as flexible handles for follow-up chemistry. Nucleophilic addition typically occurs chemoselectively on the imine moiety with complete diastereoselectivity, providing opportunities for the construction of complex molecular frameworks. The synthetic potential of the method was showcased in the formal total synthesis of (Âą)-aspidofractinine
âDoes My Haltung Look Big In This?â: The Use of Social Pedagogical Theory for the Development of Ethical and Value Led Practice
The aim of this article is to set out how the use of social pedagogical Haltung can support the exploration of values and how this informs and shapes a practitionerâs direct work. Haltung is a German concept that has no direct English translation but
means âmind setâ, âethosâ or âattitudeâ (Eichsteller, 2010) and relates to an individualâs value base. MĂźhrelâs (2008, cited in Eichsteller, 2010), sets out that a social pedagogical Haltung is based on the two concepts of empathic understanding
and regard. This paper argues that the use of a social pedagogical Haltung gives practitioners a philosophical framework to support the reflection of core values and ethics held on a personal level. It also supports an understanding of how these
influence practitioners and students when using âselfâ in relationship based practice. The understanding of Haltung is important but for social pedagogical practice to be undertaken it also has to be demonstrated by actions. The reflective activity Values
Alive in Practice, set out in this article, provides a tool for social workers, practitioners and students to critically explore their own values and practice and make more meaningful connections between their Haltung and their behaviours
demonstrated in their everyday work.
In the UK, values and standards for social work practice are set out by British Association of Social Work and Social Work England. Arguably, these have, at times, been reduced to a checklist for students and practitioners and can lack more in depth
and explicit links to practice. The analysis of practice is more likely to focus on the skills and abilities of practitioners rather than the value base that underpins these. Whilst the understanding and key application of core knowledge and skills is essential for competent social work practice (Forrester et al., 2019), this article argues that it must also be supported and shaped by ethical principles. This article seeks to explore how social workers can be supported to adopt value led approaches to complex work within an outcome focussed culture
Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion
Photovoltaics (PVs) are a critical technology for curbing growing levels of
anthropogenic greenhouse gas emissions, and meeting increases in future demand
for low-carbon electricity. In order to fulfil ambitions for net-zero carbon
dioxide equivalent (CO2eq) emissions worldwide, the global
cumulative capacity of solar PVs must increase by an order of magnitude from
0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable
Energy Agency, which is considered to be a highly conservative estimate. In
2020, the Henry Royce Institute brought together the UK PV community to discuss
the critical technological and infrastructure challenges that need to be
overcome to address the vast challenges in accelerating PV deployment. Herein,
we examine the key developments in the global community, especially the
progress made in the field since this earlier roadmap, bringing together
experts primarily from the UK across the breadth of the photovoltaics
community. The focus is both on the challenges in improving the efficiency,
stability and levelized cost of electricity of current technologies for
utility-scale PVs, as well as the fundamental questions in novel technologies
that can have a significant impact on emerging markets, such as indoor PVs,
space PVs, and agrivoltaics. We discuss challenges in advanced metrology and
computational tools, as well as the growing synergies between PVs and solar
fuels, and offer a perspective on the environmental sustainability of the PV
industry. Through this roadmap, we emphasize promising pathways forward in both
the short- and long-term, and for communities working on technologies across a
range of maturity levels to learn from each other.Comment: 160 pages, 21 figure
Track D Social Science, Human Rights and Political Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd
Enabling planetary science across light-years. Ariel Definition Study Report
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution
Base metal catalyzed isocyanide insertions
Isocyanides are diverse C1 building blocks considering their potential to react with nucleophiles, electrophiles, and radicals. Therefore, perhaps not surprisingly, isocyanides are highly valuable as inputs for multicomponent reactions (MCRs) and other one-pot cascade processes. In the field of organometallic chemistry, isocyanides typically serve as ligands for transition metals. The coordination of isocyanides to metal centers alters the electronic distribution of the isocyano moiety, and reaction pathways can therefore be accessed that are not possible in the absence of the metal. The tunable reactivity of the isocyanide functional group by transition metals has evolved into numerous useful applications. Especially palladium-catalyzed isocyanide insertion processes have emerged as powerful reactions in the past decade. However, reports on the use of earth-abundant and cheap base metals in these types of transformations are scarce and have received far less attention. In this Minireview, we focus on these emerging base metal catalyzed reactions and highlight their potential in synthetic organic chemistry. Although mechanistic studies are still scarce, we discuss distinct proposed catalytic cycles and categorize the literature according to 1) the (hetero)atom bound to and 2) the type of bonding with the transition metal in which the (formal) insertion occurs
- âŚ