849 research outputs found

    Wilson ratio in Yb-substituted CeCoIn5

    Full text link
    We have investigated the effect of Yb substitution on the Pauli limited, heavy fermion superconductor, CeCoIn5_5. Yb acts as a non-magnetic divalent substituent for Ce throughout the entire doping range, equivalent to hole doping on the rare earth site. We found that the upper critical field in (Ce,Yb)CoIn5_5 is Pauli limited, yet the reduced (H,T) phase diagram is insensitive to disorder, as expected in the purely orbitally limited case. We use the Pauli limiting field, the superconducting condensation energy and the electronic specific heat coefficient to determine the Wilson ratio (RWR_{W}), the ratio of the specific heat coefficient to the Pauli susceptibility in CeCoIn5_5. The method is applicable to any Pauli limited superconductor in the clean limit.Comment: 5 pages, 1 table, 4 figure

    Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles

    Get PDF
    Colloidal particles with a 14 nm diameter Au core surrounded by a 72 nm thick silica shell have been irradiated with 30 MeV heavy ions. The shell deforms into an oblate ellipsoid, while the core becomes rod-shaped (aspect ratio up to 9) with the major axis along the beam. Optical extinction measurements show evidence for split plasmon bands, characteristic for anisotropic metal nanoparticles

    Determination of complex dielectric functions of ion implanted and implanted‐annealed amorphous silicon by spectroscopic ellipsometry

    Get PDF
    Measuring with a spectroscopic ellipsometer (SE) in the 1.8–4.5 eV photon energy region we determined the complex dielectric function (Ï” = Ï”1 + iÏ”2) of different kinds of amorphous silicon prepared by self‐implantation and thermal relaxation (500 °C, 3 h). These measurements show that the complex dielectric function (and thus the complex refractive index) of implanted a‐Si (i‐a‐Si) differs from that of relaxed (annealed) a‐Si (r‐a‐Si). Moreover, its Ï” differs from the Ï” of evaporated a‐Si (e‐a‐Si) found in the handbooks as Ï” for a‐Si. If we use this Ï” to evaluate SE measurements of ion implanted silicon then the fit is very poor. We deduced the optical band gap of these materials using the Davis–Mott plot based on the relation: (Ï”2E2)1/3 ∌ (E− Eg). The results are: 0.85 eV (i‐a‐Si), 1.12 eV (e‐a‐Si), 1.30 eV (r‐a‐Si). We attribute the optical change to annihilation of point defects

    The Amplitude of Non-Equilibrium Quantum Interference in Metallic Mesoscopic Systems

    Full text link
    We study the influence of a DC bias voltage V on quantum interference corrections to the measured differential conductance in metallic mesoscopic wires and rings. The amplitude of both universal conductance fluctuations (UCF) and Aharonov-Bohm effect (ABE) is enhanced several times for voltages larger than the Thouless energy. The enhancement persists even in the presence of inelastic electron-electron scattering up to V ~ 1 mV. For larger voltages electron-phonon collisions lead to the amplitude decaying as a power law for the UCF and exponentially for the ABE. We obtain good agreement of the experimental data with a model which takes into account the decrease of the electron phase-coherence length due to electron-electron and electron-phonon scattering.Comment: New title, refined analysis. 7 pages, 3 figures, to be published in Europhysics Letter

    Direct simulation of ion beam induced stressing and amorphization of silicon

    Full text link
    Using molecular dynamics (MD) simulation, we investigate the mechanical response of silicon to high dose ion-irradiation. We employ a realistic and efficient model to directly simulate ion beam induced amorphization. Structural properties of the amorphized sample are compared with experimental data and results of other simulation studies. We find the behavior of the irradiated material is related to the rate at which it can relax. Depending upon the ability to deform, we observe either the generation of a high compressive stress and subsequent expansion of the material, or generation of tensile stress and densification. We note that statistical material properties, such as radial distribution functions are not sufficient to differentiate between different densities of amorphous samples. For any reasonable deformation rate, we observe an expansion of the target upon amorphization in agreement with experimental observations. This is in contrast to simulations of quenching which usually result in denser structures relative to crystalline Si. We conclude that although there is substantial agreement between experimental measurements and most simulation results, the amorphous structures being investigated may have fundamental differences; the difference in density can be attributed to local defects within the amorphous network. Finally we show that annealing simulations of our amorphized samples can lead to a reduction of high energy local defects without a large scale rearrangement of the amorphous network. This supports the proposal that defects in amorphous silicon are analogous to those in crystalline silicon.Comment: 13 pages, 12 figure

    Programmable unitary spatial modes manipulation

    Full text link
    Free space propagation and conventional optical systems such as lenses and mirrors all perform spatial unitary transforms. However, the subset of transforms available through these conventional systems is limited in scope. We present here a unitary programmable mode converter (UPMC) capable of performing any spatial unitary transform of the light field. It is based on a succession of reflections on programmable deformable mirrors and free space propagation. We first show theoretically that a UPMC without limitations on resources can perform perfectly any transform. We then build an experimental implementation of the UPMC and show that, even when limited to three reflections on an array of 12 pixels, the UPMC is capable of performing single mode tranforms with an efficiency greater than 80% for the first 4 modes of the TEM basis

    Review of a major epidemic of methicillin-resistant Staphylococcus aureus: The costs of screening and consequences of outbreak management

    Get PDF
    Background: A major outbreak of methicillin-resistant Staphylococcus aureus (MRSA) occurred in locations C and Z of our hospital and lasted for several years. It affected 1,230 patients and 153 personnel. Methods: Outbreak management was installed according to the Dutch "search and destroy" policy. A rapid, high-throughput method for molecular screening of potential MRSA carriers was implemented. Outbreak isolates were retrospectively genotyped by pulsed field gel electrophoresis. Costs of molecular screening were compared with screening by culture. Results: Genotyping results revealed 4 distinct epidemic MRSA clones. Three were present in hospital C. Because of a merger of hospitals, these clones spread to hospital Z. Another clone of MRSA affected other health care-related institutions in the region. Because of the implementation of strict containment measures of the "search and destroy" policy, the annual number of tests decreased from 100,000 to 18,000. The disposables and reagents used in polymerase chain reaction technology are more expensive than those of conventional methods. However, the clinical and economic benefits of fast results in regard to expenses of the hospital clearly outweigh the higher costs of screening. Conclusion: The implementation of a rapid, high-throughput molecular screening system greatly contributed to the effectiveness of strict containment measures of the "search and destroy" policy. The major epidemic clones of MRSA in the outbreak were eradicated by this strategy

    A New Greenhouse Method to Assay Soybean Resistance to Brown Stem Rot

    Get PDF
    Greenhouse, growth chamber, and field experiments were conducted to develop a method to assess resistance of soybeans to Cadophora gregata (Phialophora gregata), causal agent of brown stem rot (BSR). In the new method, C. gregata is introduced at the base of the stems of 2-week-old soybeans, and the presence of the fungus is assessed in the tips of the stems 5 weeks later. To test the effectiveness of the method, two populations of soybeans and 10 checks were inoculated at the stem base and then assayed for fungal colonization of the stem tips, percentage of symptomatic leaflets, and percent internal stem length discolored. The lines also were planted in naturally infested fields to assess for percent internal stem length discolored, and were tested for the presence/absence of a BSR-resistant molecular marker. Greenhouse, field, and molecular marker data were compared. Linear regression analysis suggested that percentage of plants with colonized stem tips explained 41 to 64% of the variability (P \u3c 0.0001) in percent stem length discolored in the field and 58 to 85% of the variability (P \u3c 0.0001) in molecular marker data for BSR resistance. Percent stem length discolored assessed in the greenhouse had the lowest correlation with percent stem length discolored in the field and with the molecular marker. Of three incubation temperatures tested, 22°C was the most conducive for distinguishing resistant/susceptible soybeans using the colonization method
    • 

    corecore