16 research outputs found
Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of seven trimeric light-harvesting complex II proteins. The complex was readily observed in partially-solubilized Tris-washed photosystem II membranes from spinach but was also found to occur, with a low frequency, in oxygen-evolving photosystem II membranes. The structure reveals six peripheral trimers with the same rotational orientation and a central trimer with the opposite orientation. We conclude that the heptamer represents a naturally occurring aggregation state of part of the light-harvesting complex II trimers in the thylakoid membranes.
Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII
LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipation. The latter in particular is thought to occur in part via spectroscopically 'dark' states. We searched for such states in LHCII trimers from spinach, at both room temperature and at 77 K. Using 2D electronic spectroscopy, we explored coherent interactions between chlorophylls absorbing on the low-energy side of LHCII, which is the region that is responsible for both light-harvesting and photoprotection. 2D beating frequency maps allow us to identify four frequencies with strong excitonic character. In particular, our results show the presence of a low-lying state that is coupled to a low-energy excitonic state. We assign this to a mixed excitonic-charge transfer state involving the state with charge separation within the Chl a603-b609 heterodimer, borrowing some dipole strength from the Chl a602-a603 excited states. Such a state may play a role in photoprotection, in conjunction with specific and environmentally controlled realizations of protein dynamic disorder. Our identification and assignment of the coherences observed in the 2D frequency maps suggests that the structure of exciton states as well as a mixing of the excited and charge-transfer states is affected by coupling of these states to resonant vibrations in LHCII
Photosystem II solubilizes as a monomer by mild detergent treatment of unstacked thylakoid membranes
We studied the aggregation state of Photosystem II in stacked and unstacked thylakoid membranes from spinach after a quick andmild solubilization with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by analysis by diode-array-assisted gel filtration chromatography and electron microscopy. The results suggest that Photosystem II (PS II) isolates either as a paired, appressed membrane fragment or as a dimeric PS II–LHC II supercomplex upon mild solubilization of stacked thylakoid membranes or PS II grana membranes, but predominantly as a core monomer upon mild solubilization of unstacked thylakoid membranes. Analysis of paired grana membrane fragments reveals that the number of PS II dimers is strongly reduced in single membranes at the margins of the grana membrane fragments. We suggest that unstacking of thylakoid membranes results in a spontaneous disintegration of the PS II–LHC II supercomplexes into separated PS II core monomers and peripheral light-harvesting complexes.
Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the Photosystem II, Photosystem I, ATP synthase and cytochrome b6f complexes
A biochemical and structural analysis is presented of fractions that were obtained by a quick and mild solubilization of thylakoid membranes from spinach with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by a partial purification using gel filtration chromatography. The largest fractions consisted of paired, appressed membrane fragments with an average diameter of about 360 nm and contain Photosystem II (PS II) and its associated light-harvesting antenna (LHC II), but virtually no Photosystem I, ATP synthase and cytochrome b6f complex. Some of the membranes show a semi-regular ordering of PS II in rows at an average distance of about 26.3 nm, and from a partially disrupted grana membrane fragment we show that the supercomplexes of PS II and LHC II represent the basic structural unit of PS II in the grana membranes. The numbers of free LHC II and PS II core complexes were very high and very low, respectively. The other macromolecular complexes of the thylakoid membrane occurred almost exclusively in dispersed forms. Photosystem I was observed in monomeric or multimeric PS I-200 complexes and there are no indications for free LHC I complexes. An extensive analysis by electron microscopy and image analysis of the CF0F1 ATP synthase complex suggests locations of the δ (on top of the F1 headpiece) and ε subunits (in the central stalk) and reveals that in a substantial part of the complexes the F1 headpiece is bended considerably from the central stalk. This kinking is very likely not an artefact of the isolation procedure and may represent the complex in its inactive, oxidized form.
Absence of far-red emission band in aggregated core antenna complexes
Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel