549 research outputs found

    Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars

    Full text link
    Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars (~50 nm in diameter) have been studied experimentally as a function of Co layer thickness at low temperatures for large applied fields perpendicular to the layers. For asymmetric junctions current induced excitations are observed at high current densities for only one polarity of the current and are absent at the same current densities in symmetric junctions. These observations confirm recent predictions of spin-transfer torque induced spin wave excitations in single layer junctions with a strong asymmetry in the spin accumulation in the leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Current-Induced Effective Magnetic Fields in Co/Cu/Co Nanopillars

    Full text link
    We present a method to measure the effective field contribution to spin-transfer-induced interactions between the magnetic layers in a trilayer nanostructure, which enables spin-current effects to be distinguished from the usual charge-current-induced magnetic fields. This technique is demonstrated on submicron Co/Cu/Co nanopillars. The hysteresis loop of one of the magnetic layers in the trilayer is measured as a function of current while the direction of magnetization of the other layer is kept fixed, first in one direction and then in the opposite direction. These measurements show a current-dependent shift of the hysteresis loop which, based on the symmetry of the magnetic response, we associate with spin-transfer. The observed loop-shift with applied current at room temperature is reduced in measurements at 4.2 K. We interprete these results both in terms of a spin-current dependent effective activation barrier for magnetization reversal and a spin-current dependent effective magnetic field. From data at 4.2 K we estimate the magnitude of the spin-transfer induced effective field to be 1.5×107\sim 1.5 \times 10^{-7} Oe cm2^2/A, about a factor of 5 less than the spin-transfer torque.Comment: 6 pages, 4 figure

    Maternal territoriality achieved through shaking and lunging: an investigation of patterns in associated behaviors and substratevibrations in a colonial embiopteran, Antipaluria urichi

    Get PDF
    Substrate vibration communication is displayed by a variety of insects that rely on silk for shelter. Such signaling is often associated with territoriality and social interactions. The goal in this study was to explore the use of substrate vibration by subsocial insects of the little-studied order Embi-optera (also known as Embiidina). Antipaluria urichi (Saussure) (Embioptera: Clothodidae) from Trinidad and Tobago, a large embiopteran, exhibits maternal care and facultatively colonial behavior. Previous observations suggested that they were aggressive while guarding eggs but gregarious when not. Egg-guarders in particular have been observed shaking and lunging their bodies, but to date these putative signals have not been recorded nor were their contexts known. Staged interactions were conducted in the laboratory using residents that had established silk domiciles enveloping piezo-electric film used to detect vibrations. Predictions from two competing hypotheses, the maternal territoriality hypothesis and the group cohesion hypothesis, were erected to explain the occurrence of signaling. Experiments pitted pre-reproductive and egg-guarding residents against female and male intruders, representing social partners that ranged from potentially threatening to innocuous or even helpful. Behavioral acts were identified and scored along with associated substrate vibrations, which were measured for associated body movements, duration, and frequency spectra. Signals, sorted by the distinct actions used to generate them, were lunge, shake, push up, and snapback. Egg-guarding females produced most signals in response to female intruders, a result that supported the maternal territoriality hypothesis. Female intruders generally responded to such signaling by moving away from egg-guarding residents. In contrast, pre-reproductive residents did not signal much, and intruders settled beside them. Theme software was used to analyze the behavioral event recordings to seek patterns over time and their association with signals. Long patterns of behavioral acts were associated with shakes, lunges, and push-ups, indicating that interactions were occurring between the residents and intruders as would be expected when communication occurs. The value of Theme software, as well as the relationship between signaling by A. urichi and the risks and benefits of coloniality, are discussed

    Spatial distribution of local currents of massless Dirac fermions in quantum transport through graphene nanoribbons

    Full text link
    We employ the formalism of bond currents, expressed in terms of the nonequilibrium Green functions, to image the charge flow between two sites of the honeycomb lattice of graphene ribbons of few nanometers width. In sharp contrast to nonrelativistic electrons, current density profiles of quantum transport at energies close to the Dirac point in clean zigzag graphene nanoribbons (ZGNR) differs markedly from the profiles of charge density peaked at the edges due to zero-energy localized edge states. For transport through the lowest propagating mode induced by these edge states, edge vacancies do not affect current density peaked in the center of ZGNR. The long-range potential of a single impurity acts to reduce local current around it while concurrently increasing the current density along the zigzag edge, so that ZGNR conductance remains perfect G=2e2/hG=2e^2/h.Comment: 5 pages, 5 figure

    Current-Induced Magnetization Reversal in High Magnetic Fields in Co/Cu/Co Nanopillars

    Full text link
    Current-induced magnetization dynamics in Co/Cu/Co trilayer nanopillars (~100nm in diameter) has been studied experimentally for large applied fields perpendicular to the layers. An abrupt and hysteretic increase in dynamic resistance is observed at high current densities for one polarity of the current, comparable to the giant magnetoresistance effect observed at low fields. A micromagnetic model, that includes a spin-transfer torque, suggests that the current induces a complete reversal of the thin Co layer to alignment antiparallel to the applied field-that is, to a state of maximum magnetic energy.Comment: 11 pages, 3 figures, (submitted to Phys. Rev. Lett.), added missing figure caption of fig. 3, updated to published versio

    Reset dynamics and latching in niobium superconducting nanowire single-photon detectors

    Get PDF
    We study the reset dynamics of niobium (Nb) superconducting nanowire single-photon detectors (SNSPDs) using experimental measurements and numerical simulations. The numerical simulations of the detection dynamics agree well with experimental measurements, using independently determined parameters in the simulations. We find that if the photon-induced hotspot cools too slowly, the device will latch into a dc resistive state. To avoid latching, the time for the hotspot to cool must be short compared to the inductive time constant that governs the resetting of the current in the device after hotspot formation. From simulations of the energy relaxation process, we find that the hotspot cooling time is determined primarily by the temperature-dependent electron-phonon inelastic time. Latching prevents reset and precludes subsequent photon detection. Fast resetting to the superconducting state is therefore essential, and we demonstrate experimentally how this is achieved

    Characterisation of bacteria from the cultures of a Chlorella strain isolated from textile wastewater and their growth enhancing effects on the axenic cultures of Chlorella vulgaris in low nutrient media

    Get PDF
    There is increasing interest in the use of microalgae grown on wastewater to provide useful metabolites. Several bacteria have been shown to affect the growth rate and quality of the algae, but it is not clear if this is specific to a particular group of bacteria or if nutrient conditions can also influence this interaction. The bacterial community associated with a freshwater Chlorella sp. isolated from open pond textile factory wastewater was characterised and a diverse group of bacteria isolated. We provide evidence that nutrient concentrations affect bacterial community composition. When grown in BG11 medium, the community was dominated by Pseudomonas sp., but when grown in Chu 10 medium (which contains lower nitrogen and phosphorus), the relative abundance of a Brevundimonas spp. increased. Several of the bacteria isolated were able to influence the growth of an axenic Chlorella vulgaris culture. The Pseudomonas sp. had a negative effect in all media tested whereas several isolates enhanced C. vulgaris growth, but only in Chu 10 medium. This supports the theory that bacterial stimulation of algal growth is not limited to species-specific interactions but is influenced by environmental conditions. In low nutrient conditions, Chlorella sp. may be increasingly dependent on bacteria for growth
    corecore