192 research outputs found

    Progress in Plasma-Assisted Catalysis for Carbon Dioxide Reduction

    Get PDF
    Production of chemicals and fuels based on CO2 conversion is attracting a special attention nowadays, especially regarding the fast depletion of fossil resources and increase of CO2 emissions into the Earth’s atmosphere. Recently, plasma technology has gained increasing interest as a non-equilibrium medium suitable for CO2 conversion, which provides a promising alternative to the conventional pathway for greenhouse gas conversion. The combination of plasma and catalysis is of great interest for turning plasma chemistry in applications related to pollution and energy issues. In this chapter a short review of the current progress in plasma-assisted catalytic processes for CO2 reduction is given. The most widely used discharges for CO2 conversion are presented and briefly discussed, illustrating how to achieve a better energy and conversion efficiency. The chapter includes the recent status and advances of the most promising candidates (plasma catalysis) to obtain efficient CO2 conversion, along with the future outlook of this plasma-assisted catalytic process for further improvement

    Role of Plasma Catalysis in the Microwave Plasma‐Assisted Conversion of CO2

    Get PDF
    Climate change and global warming caused by the increasing emissions of greenhouse gases (such as CO2) recently attract attention of the scientific community. The combination of plasma and catalysis is of great interest for turning plasma chemistry in applications related to pollution and energy issues. In this chapter, our recent research efforts related to optimization of the conversion of CO2 and CO2/H2O mixtures in a pulsed surface‐wave sustained microwave discharge are presented. The effects of different plasma operating conditions and catalyst preparation methods on the CO2 conversion and its energy efficiency are discussed. It is demonstrated that, compared to the plasma‐only case, the CO2 conversion and energy efficiency can be enhanced by a factor of ∼2.1 by selecting the appropriate conditions. The catalyst characterization shows that Ar plasma treatment results in a higher density of oxygen vacancies and a comparatively uniform distribution of NiO on the TiO2 surface, which strongly influence CO2 conversion and energy efficiencies of this process. The dissociative electron attachment of CO2 at the catalyst surface enhanced by the oxygen vacancies and plasma electrons may explain the increase of conversion and energy efficiencies in this case. A mechanism of plasma‐catalytic conversion of CO2 at the catalyst surface in CO2 and CO2/H2O mixtures is proposed

    Enhancing the Greenhouse Gas Conversion Efficiency in Microwave Discharges by Power Modulation

    Get PDF
    Scientific interest to the plasma-assisted greenhouse gas conversion continuously increases nowadays, as a part of the global Green Energy activities. Among the plasma sources suitable for conversion of CO2 and other greenhouse gases, the non-equilibrium (low-temperature) discharges where the electron temperature is considerably higher than the gas temperature, represent special interest. The flowing gas discharges sustained by microwave radiation are proven to be especially suitable for molecular gas conversion due to high degree of non-equilibrium they possess. In this Chapter the optimization of CO2 conversion efficiency in microwave discharges working in pulsed regime is considered. The pulsed energy delivery represents new approach for maximization of CO2 conversion solely based on the discharge “fine-tuning”, i. e. without the additional power expenses. In our work several discharge parameters along the gas flow direction in the discharge have been studied using various diagnostic techniques, such as optical actinometry, laser-induced fluorescence, and gas chromatography. The results show that CO2 conversion efficiency can be essentially increased solely based on the plasma pulse frequency tuning. The obtained results are explained by the relation between the plasma pulse parameters and the characteristic time of the relevant energy transfer processes in the discharge

    Data-constrained Magnetohydrodynamic Simulation of an Intermediate Solar Filament Eruption

    Full text link
    Solar eruptive activities could occur in weak magnetic field environments and over large spatial scales, especially relevant to eruptions involving intermediate or quiescent solar filaments. To handle the large scales, we implement and apply a flux rope embedding method using regularized Biot-Savart laws in the spherical coordinate system. Combined with a potential field source surface model and a magneto-frictional method, a nonlinear force-free field comprising a flux rope embedded in a potential field is constructed. Using the combined nonlinear force-free field as the initial condition, we then perform a zero-β\beta data-constrained magnetohydrodynamic (MHD) simulation for an M8.7 flare at 03:38 UT on 2012 January 23. The MHD model reproduces the eruption process, flare ribbon evolution (represented by the quasi-separatrix layer evolution) and kinematics of the flux rope. This approach could potentially model global-scale eruptions from weak field regions.Comment: 23 pages, 7 figures, accepted for publicaiton in Ap

    Plasma fatty acids and the risk of metabolic syndrome in ethnic Chinese adults in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence of predictive power of various fatty acids on the risk of metabolic syndrome was scanty. We evaluated the role of various fatty acids, including saturated fat, monounsaturated fat, transfat, n-6 fatty acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for the risk of the metabolic syndrome in Taiwan.</p> <p>Results</p> <p>A nested case-control study based on 1000 cases of metabolic syndrome and 1:1 matched control subjects. For saturated fat, monounsaturated fat and transfat, the higher the concentration the higher the risk for metabolic syndrome: participants in the highest quintile had a 2.22-fold (95% confidence interval [CI], 1.66 to 2.97) higher risk of metabolic syndrome. In addition, the participants in higher EPA quintiles were less likely to have the risk of metabolic syndrome (adjusted risk, 0.46 [0.34 to 0.61] for the fifth quintile). Participants in the highest risk group (low EPA and high transfat) had a 2.36-fold higher risk of metabolic syndrome (95% CI, 1.38 to 4.03), compared with those in the lowest risk group (high EPA and low transfat). For prediction power, the area under ROC curves increased from 0.926 in the baseline model to 0.928 after adding fatty acids. The net reclassification improvement for metabolic syndrome risk was substantial for saturated fat (2.1%, <it>P </it>= 0.05).</p> <p>Conclusions</p> <p>Plasma fatty acid components improved the prediction of the metabolic syndrome risk in Taiwan.</p

    Vitamin E δ-tocotrienol Sensitizes Human Pancreatic Cancer Cells to TRAIL-induced Apoptosis Through Proteasome-Mediated Down-Regulation of c-FLIP

    Get PDF
    Background: Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects. Methods: We report a novel function of VEDT in augmenting tumor necrosis factor-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis in pancreatic cancer cells. The effects of VEDT were shown by its ability to trigger caspase-8-dependent apoptosis in pancreatic cancer cells. Results: When combined with TRAIL, VEDT significantly augmented TRAIL-induced apoptosis of pancreatic cancer cells. VEDT decreased cellular FLICE inhibitory protein (c-FLIP) levels without consistently modulating the expression of decoy death receptors 1, 2, 3 or death receptors 4 and 5. Enforced expression of c-FLIP substantially attenuated VEDT/TRAIL-induced apoptosis. Thus, c-FLIP reduction plays an important part in mediating VEDT/TRAIL-induced apoptosis. Moreover, VEDT increased c-FLIP ubiquitination and degradation but did not affect its transcription, suggesting that VEDT decreases c-FLIP levels through promoting its degradation. Of note, degradation of c-FLIP and enhanced TRAIL-induced apoptosis in pancreatic cancer cells were observed only with the anticancer bioactive vitamin E compounds δ-, γ-, and β-tocotrienol but not with the anticancer inactive vitamin E compounds α-tocotrienol and α-, β-, γ-, and δ-tocopherol. Conclusions: c-FLIP degradation is a key event for death receptor-induced apoptosis by anticancer bioactive vitamin E compounds in pancreatic cancer cells. Moreover, VEDT augmented TRAIL inhibition of pancreatic tumor growth and induction of apoptosis in vivo. Combination therapy with TRAIL agonists and bioactive vitamin E compounds may offer a novel strategy for pancreatic cancer intervention
    corecore