666 research outputs found
Hyperfine Interactions in the Heavy Fermion CeMIn_5 Systems
The CeMIn_5 heavy fermion compounds have attracted enormous interest since
their discovery six years ago. These materials exhibit a rich spectrum of
unusual correlated electron behavior, and may be an ideal model for the high
temperature superconductors. As many of these systems are either
antiferromagnets, or lie close to an antiferromagnetic phase boundary, it is
crucial to understand the behavior of the dynamic and static magnetism. Since
neutron scattering is difficult in these materials, often the primary source of
information about the magnetic fluctuations is Nuclear Magnetic Resonance
(NMR). Therefore, it is crucial to have a detailed understanding of how the
nuclear moments interact with conduction electrons and the local moments
present in these systems. Here we present a detailed analysis of the hyperfine
coupling based on anisotropic hyperfine coupling tensors between nuclear
moments and local moments. Because the couplings are symmetric with respect to
bond axes rather than crystal lattice directions, the nuclear sites can
experience non-vanishing hyperfine fields even in high symmetry sites.Comment: 15 pages, 5 figure
Determining the underlying Fermi surface of strongly correlated superconductors
The notion of a Fermi surface (FS) is one of the most ingenious concepts
developed by solid state physicists during the past century. It plays a central
role in our understanding of interacting electron systems. Extraordinary
efforts have been undertaken, both by experiment and by theory, to reveal the
FS of the high temperature superconductors (HTSC), the most prominent strongly
correlated superconductors. Here, we discuss some of the prevalent methods used
to determine the FS and show that they lead generally to erroneous results
close to half filling and at low temperatures, due to the large superconducting
gap (pseudogap) below (above) the superconducting transition temperature. Our
findings provide a perspective on the interplay between strong correlations and
superconductivity and highlight the importance of strong coupling theories for
the characterization as well as the determination of the underlying FS in ARPES
experiments
Particle-hole symmetry in the antiferromagnetic state of the cuprates
In the layered cuprate perovskites, the occurence of high-temperature
superconductivity seems deeply related to the unusual nature of the hole
excitations. The limiting case of a very small number of holes diffusing in the
antiferromagnetic (AF) background may provide important insights into this
problem. We have investigated the transport properties in a series of crystals
of , and found that the temperature dependences of the Hall
coefficient and thermopower change abruptly as soon as the AF phase
boundary is crossed. In the AF state at low temperatures , both and
are unexpectedly suppressed to nearly zero over a broad interval of . We
argue that this suppression arises from near-exact symmetry in the
particle-hole currents. From the trends in and , we infer that the
symmetry is increasingly robust as the hole density becomes very small
(). We discuss implications for electronic properties both within
the AF state and outside.Comment: 8 pages, 7 figure
Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study
We report 209Bi NMR and NQR measurements on a single crystal of the Kondo
insulator U3Bi4Ni3. The 209Bi nuclear spin-lattice relaxation rate ()
shows activated behavior and is well-fit by a spin gap of 220 K. The 209Bi
Knight shift (K) exhibits a strong temperature dependence arising from 5f
electrons, in which K is negative at high temperatures and increases as the
temperature is lowered. Below 50 K, K shows a broad maximum and decreases
slightly upon further cooling. Our data provide insight into the evolution of
the hyperfine fields in a fully gapped Kondo insulator based on 5f electron
hybridization.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
- …