666 research outputs found

    Hyperfine Interactions in the Heavy Fermion CeMIn_5 Systems

    Full text link
    The CeMIn_5 heavy fermion compounds have attracted enormous interest since their discovery six years ago. These materials exhibit a rich spectrum of unusual correlated electron behavior, and may be an ideal model for the high temperature superconductors. As many of these systems are either antiferromagnets, or lie close to an antiferromagnetic phase boundary, it is crucial to understand the behavior of the dynamic and static magnetism. Since neutron scattering is difficult in these materials, often the primary source of information about the magnetic fluctuations is Nuclear Magnetic Resonance (NMR). Therefore, it is crucial to have a detailed understanding of how the nuclear moments interact with conduction electrons and the local moments present in these systems. Here we present a detailed analysis of the hyperfine coupling based on anisotropic hyperfine coupling tensors between nuclear moments and local moments. Because the couplings are symmetric with respect to bond axes rather than crystal lattice directions, the nuclear sites can experience non-vanishing hyperfine fields even in high symmetry sites.Comment: 15 pages, 5 figure

    Determining the underlying Fermi surface of strongly correlated superconductors

    Full text link
    The notion of a Fermi surface (FS) is one of the most ingenious concepts developed by solid state physicists during the past century. It plays a central role in our understanding of interacting electron systems. Extraordinary efforts have been undertaken, both by experiment and by theory, to reveal the FS of the high temperature superconductors (HTSC), the most prominent strongly correlated superconductors. Here, we discuss some of the prevalent methods used to determine the FS and show that they lead generally to erroneous results close to half filling and at low temperatures, due to the large superconducting gap (pseudogap) below (above) the superconducting transition temperature. Our findings provide a perspective on the interplay between strong correlations and superconductivity and highlight the importance of strong coupling theories for the characterization as well as the determination of the underlying FS in ARPES experiments

    Particle-hole symmetry in the antiferromagnetic state of the cuprates

    Full text link
    In the layered cuprate perovskites, the occurence of high-temperature superconductivity seems deeply related to the unusual nature of the hole excitations. The limiting case of a very small number of holes diffusing in the antiferromagnetic (AF) background may provide important insights into this problem. We have investigated the transport properties in a series of crystals of YBa2Cu3Oy\rm YBa_2Cu_3O_y, and found that the temperature dependences of the Hall coefficient RHR_H and thermopower SS change abruptly as soon as the AF phase boundary is crossed. In the AF state at low temperatures TT, both RHR_H and SS are unexpectedly suppressed to nearly zero over a broad interval of TT. We argue that this suppression arises from near-exact symmetry in the particle-hole currents. From the trends in RHR_H and SS, we infer that the symmetry is increasingly robust as the hole density xx becomes very small (x≃0.01x\simeq 0.01). We discuss implications for electronic properties both within the AF state and outside.Comment: 8 pages, 7 figure

    Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study

    Full text link
    We report 209Bi NMR and NQR measurements on a single crystal of the Kondo insulator U3Bi4Ni3. The 209Bi nuclear spin-lattice relaxation rate (T1−1T_1^{-1}) shows activated behavior and is well-fit by a spin gap of 220 K. The 209Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
    • …
    corecore