683 research outputs found

    Are there cosmological evolution trends on Gamma-Ray Burst features?

    Full text link
    The variability of gamma-ray burst (GRB) is thought to be correlated with its absolute peak luminosity, and this relation had been used to derive an estimate of the redshifts of GRBs. Recently Amati et al. presented the results of spectral and energetic properties of several GRBs with known redshifts. Here we analyse the properties of two group GRBs, one group with known redshift from afterglow observation, and another group with redshift derived from the luminosity - variability relation. We study the redshift dependence of various GRBs features in their cosmological rest frames, including the burst duration, the isotropic luminosity and radiated energy, and the peak energy EpE_p of νFν\nu F_\nu spectra. We find that, for these two group GRBs, their properties are all redshift dependent, i.e. their intrinsic duration, luminosity, radiated energy and peak energy EpE_p, are all correlated with the redshift, which means that there are cosmological evolution effects on gamma-ray bursts features, and this can provide an interesting clue to the nature of GRBs. If this is true, then the results also imply that the redshift derived from the luminosity - variability relation may be reliable.Comment: Latex, 11 pages. Discussion of the selection effects have been added. Accepted for publication in MNRA

    Delignification of Ponderosa Pine Sawdust and Bark by Peroxyacetic Treatments

    Get PDF
    The purpose of this study was to determine effectiveness of peroxyacetic acid in improving the digestibility of highly lignified fibrous materials such as ponderosa pine sawdust and bark. Peroxyacetic acid is used as a delignifying agent in the making of paper from tree fibers

    Magnetocrystalline anisotropic effect in GdCo1x_{1-x}Fex_xAsO (x=0,0.05x = 0, 0.05)

    Full text link
    From a systematic study of the electrical resistivity ρ(T,H)\rho(T,H), magnetic susceptibility χ(T,H)\chi(T,H), isothermal magnetization M(H)M(H) and the specific heat C(T,H)C(T,H), a temperature-magnetic field (TT-HH) phase diagram has been established for GdCo1x_{1-x}Fex_xAsO (x=0x = 0 and 0.050.05) polycrystalline compounds. GdCoAsO undergoes two long-range magnetic transitions: ferromagnetic (FM) transition of Co 3d3d electrons (TCCoT_\textup{C}^\textup{Co}) and antiferromagnetic (AFM) transition of Gd 4f4f electrons (TNGdT_\textup{N}^\textup{Gd}). For the Fe-doped sample (x=0.05x=0.05), an extra magnetic reorientation transition takes place below TNGdT_\textup{N}^\textup{Gd}, which is likely associated with Co moments. The two magnetic species of Gd and Co are coupled antiferromagnetically to give rise to ferrimagnetic (FIM) behavior in the magnetic susceptibility. Upon decreasing the temperature (T<TCCoT < T_\textup{C}^\textup{Co}), the magnetocrystalline anisotropy breaks up the FM order of Co by aligning the moments with the local easy axes of the various grains, leading to a spin reorientation transition at TRCoT_\textup{R}^\textup{Co}. By applying a magnetic field, TRCoT_\textup{R}^\textup{Co} monotonically decreases to lower temperatures, while the TNGdT_\textup{N}^\textup{Gd} is relatively robust against the external field. On the other hand, the applied magnetic field pulls the magnetization of grains from the local easy direction to the field direction via a first-order reorientation transition, with the transition field (HMH_\textup{M}) increasing upon cooling the temperature.Comment: accepted by physical Review B 6 figures and 7 page

    Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study

    Full text link
    We report 209Bi NMR and NQR measurements on a single crystal of the Kondo insulator U3Bi4Ni3. The 209Bi nuclear spin-lattice relaxation rate (T11T_1^{-1}) shows activated behavior and is well-fit by a spin gap of 220 K. The 209Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Hyperfine Interactions in the Heavy Fermion CeMIn_5 Systems

    Full text link
    The CeMIn_5 heavy fermion compounds have attracted enormous interest since their discovery six years ago. These materials exhibit a rich spectrum of unusual correlated electron behavior, and may be an ideal model for the high temperature superconductors. As many of these systems are either antiferromagnets, or lie close to an antiferromagnetic phase boundary, it is crucial to understand the behavior of the dynamic and static magnetism. Since neutron scattering is difficult in these materials, often the primary source of information about the magnetic fluctuations is Nuclear Magnetic Resonance (NMR). Therefore, it is crucial to have a detailed understanding of how the nuclear moments interact with conduction electrons and the local moments present in these systems. Here we present a detailed analysis of the hyperfine coupling based on anisotropic hyperfine coupling tensors between nuclear moments and local moments. Because the couplings are symmetric with respect to bond axes rather than crystal lattice directions, the nuclear sites can experience non-vanishing hyperfine fields even in high symmetry sites.Comment: 15 pages, 5 figure

    Anomalous high energy dispersion in photoemission spectra from insulating cuprates

    Full text link
    Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the \Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of ~0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the \Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales.Comment: 5 pages, 3 figure

    Fully gapped superconductivity in Ni-pnictide superconductors BaNi2As2 and SrNi2P2

    Full text link
    We have performed low-temperature specific heat CC and thermal conductivity κ\kappa measurements on the Ni-pnictide superconductors BaNi2_2As2_2 (TcT_\mathrm{c}=0.7 K and SrNi2_2P2_2 (TcT_\mathrm{c}=1.4 K). The temperature dependences C(T)C(T) and κ(T)\kappa(T) of the two compounds are similar to the results of a number of s-wave superconductors. Furthermore, the concave field responses of the residual κ\kappa for BaNi2_2As2_2 rules out the presence of nodes on the Fermi surfaces. We postulate that fully gapped superconductivity could be universal for Ni-pnictide superconductors. Specific heat data on Ba0.6_{0.6}La0.4_{0.4}Ni2_2As2_2 shows a mild suppression of TcT_\mathrm{c} and Hc2H_\mathrm{c2} relative to BaNi2_2As2_2.Comment: 5 pages, 3 figures, to be published in J. Phys.: Conf. Se
    corecore