361 research outputs found

    Effect of annealing on the specific heat of Ba(Fe1-xCox)2As2

    Get PDF
    We report on the effect of annealing on the temperature and field dependencies of the low temperature specific heat of the electron-doped Ba(Fe1βˆ’x_{1-x}Cox_{x})2_{2}As2_{2} for under-(x = 0.045), optimal- (x = 0.08) and over-doped (x = 0.105 and 0.14) regimes. We observed that annealing significantly improves some superconducting characteristics in Ba(Fe1βˆ’x_{1-x}Cox_{x})2_{2}As2_{2}. It considerably increases TcT_{c}, decreases Ξ³0\gamma_{0} in the superconducting state and suppresses the Schottky-like contribution at very low temperatures. The improved sample quality allows for a better identification of the superconducting gap structure of these materials. We examine the effects of doping and annealing within a self-consistent framework for an extended s-wave pairing scenario. At optimal doping our data indicates the sample is fully gapped, while for both under and overdoped samples significant low-energy excitations possibly consistent with a nodal structure remain. The difference of sample quality offers a natural explanation for the variation in low temperature power laws observed by many techniques.Comment: 9 pages: added references, two figures and supplementary information; Accepted to Physical Review B (Jan 10, 2010

    Unusual signatures of the ferromagnetic transition in the heavy Fermion compound UMn2_2Al20_{20}

    Full text link
    Magnetic susceptibility results for single crystals of the new cubic compounds UT2_2Al20_{20} (T=Mn, V, and Mo) are reported. Magnetization, specific heat, resistivity, and neutron diffraction results for a single crystal and neutron diffraction and inelastic spectra for a powder sample are reported for UMn2_2Al20_{20}. For T = V and Mo, temperature independent Pauli paramagnetism is observed. For UMn2_2Al20_{20}, a ferromagnetic transition is observed in the magnetic susceptibility at TcT_c = 20 K. The specific heat anomaly at TcT_c is very weak while no anomaly in the resistivity is seen at TcT_c. We discuss two possible origins for this behavior of UMn2_2Al20_{20}: moderately small moment itinerant ferromagnetism, or induced local moment ferromagnetism.Comment: 5 pages, 5 figures, to be published in Phys. rev.

    Kondo behavior, ferromagnetic correlations, and crystal fields in the heavy Fermion compounds Ce3X (X=In, Sn)

    Full text link
    We report measurements of inelastic neutron scattering, magnetic susceptibility, magnetization, and the magnetic field dependence of the specific heat for the heavy Fermion compounds Ce3_3In and Ce3_3Sn. The neutron scattering results show that the excited crystal field levels have energies E1E_1 = 13.2 meV, E2E_2 = 44.8 meV for Ce3_3In and E1E_1 = 18.5 meV, E2E_2 = 36.1 meV for Ce3_3Sn. The Kondo temperature deduced from the quasielastic linewidth is 17 K for Ce3_3In and 40 K for Ce3_3Sn. The low temperature behavior of the specific heat, magnetization, and susceptibility can not be well-described by J=1/2 Kondo physics alone, but require calculations that include contributions from the Kondo effect, broadened crystal fields, and ferromagnetic correlations, all of which are known to be important in these compounds. We find that in Ce3_3In the ferromagnetic fluctuation makes a 10-15 % contribution to the ground state doublet entropy and magnetization. The large specific heat coefficient Ξ³\gamma in this heavy fermion system thus arises more from the ferromagnetic correlations than from the Kondo behavior.Comment: 8 pages, 6 figure

    Quantum critical behavior in the heavy Fermion single crystal Ce(Ni0.935_{0.935}Pd0.065_{0.065})2_2Ge2_2

    Full text link
    We have performed magnetic susceptibility, specific heat, resistivity, and inelastic neutron scattering measurements on a single crystal of the heavy Fermion compound Ce(Ni0.935_{0.935}Pd0.065_{0.065})2_2Ge2_2, which is believed to be close to a quantum critical point (QCP) at T = 0. At lowest temperature(1.8-3.5 K), the magnetic susceptibility behaves as Ο‡(T)βˆ’Ο‡(0)\chi(T)-\chi (0) ∝\propto Tβˆ’1/6T^{-1/6} with Ο‡(0)=0.032Γ—10βˆ’6\chi (0) = 0.032 \times 10^{-6} m3^3/mole (0.0025 emu/mole). For T<T< 1 K, the specific heat can be fit to the formula Ξ”C/T=Ξ³0βˆ’T1/2\Delta C/T = \gamma_0 - T^{1/2} with Ξ³0\gamma_0 of order 700 mJ/mole-K2^2. The resistivity behaves as ρ=ρ0+AT3/2\rho = \rho_0 + AT^{3/2} for temperatures below 2 K. This low temperature behavior for Ξ³(T)\gamma (T) and ρ(T)\rho (T) is in accord with the SCR theory of Moriya and Takimoto\cite{Moriya}. The inelastic neutron scattering spectra show a broad peak near 1.5 meV that appears to be independent of QQ; we interpret this as Kondo scattering with TK=T_K = 17 K. In addition, the scattering is enhanced near QQ=(1/2, 1/2, 0) with maximum scattering at Ξ”E\Delta E = 0.45 meV; we interpret this as scattering from antiferromagnetic fluctuations near the antiferromagnetic QCP.Comment: to be published in J. Phys: Conference Serie
    • …
    corecore