2 research outputs found

    Hybrid Quantum Neural Network Image Anti-Noise Classification Model Combined with Error Mitigation

    No full text
    In this study, we present an innovative approach to quantum image classification, specifically designed to mitigate the impact of noise interference. Our proposed method integrates key technologies within a hybrid variational quantum neural network architecture, aiming to enhance image classification performance and bolster robustness in noisy environments. We utilize a convolutional autoencoder (CAE) for feature extraction from classical images, capturing essential characteristics. The image information undergoes transformation into a quantum state through amplitude coding, replacing the coding layer of a traditional quantum neural network (QNN). Within the quantum circuit, a variational quantum neural network optimizes model parameters using parameterized quantum gate operations and classical–quantum hybrid training methods. To enhance the system’s resilience to noise, we introduce a quantum autoencoder for error mitigation. Experiments conducted on FashionMNIST datasets demonstrate the efficacy of our classification model, achieving an accuracy of 92%, and it performs well in noisy environments. Comparative analysis with other quantum algorithms reveals superior performance under noise interference, substantiating the effectiveness of our method in addressing noise challenges in image classification tasks. The results highlight the potential advantages of our proposed quantum image classification model over existing alternatives, particularly in noisy environments

    DataSheet1_Combining photodynamic therapy and cascade chemotherapy for enhanced tumor cytotoxicity: the role of CTT2P@B nanoparticles.docx

    No full text
    The mitochondria act as the main producers of reactive oxygen species (ROS) within cells. Elevated levels of ROS can activate the mitochondrial apoptotic pathway, leading to cell apoptosis. In this study, we devised a molecular prodrug named CTT2P, demonstrating notable efficacy in facilitating mitochondrial apoptosis. To develop nanomedicine, we enveloped CTT2P within bovine serum albumin (BSA), resulting in the formulation known as CTT2P@B. The molecular prodrug CTT2P is achieved by covalently conjugating mitochondrial targeting triphenylphosphine (PPh3), photosensitizer TPPOH2, ROS-sensitive thioketal (TK), and chemotherapeutic drug camptothecin (CPT). The prodrug, which is chemically bonded, prevents the escape of drugs while they circulate throughout the body, guaranteeing the coordinated dispersion of both medications inside the organism. Additionally, the concurrent integration of targeted photodynamic therapy and cascade chemotherapy synergistically enhances the therapeutic efficacy of pharmaceutical agents. Experimental results indicated that the covalently attached prodrug significantly mitigated CPT cytotoxicity under dark conditions. In contrast, TPPOH2, CTT2, CTT2P, and CTT2P@B nanoparticles exhibited increasing tumor cell-killing effects and suppressed tumor growth when exposed to light at 660 nm with an intensity of 280 mW cm−2. Consequently, this laser-triggered, mitochondria-targeted, combined photodynamic therapy and chemotherapy nano drug delivery system, adept at efficiently promoting mitochondrial apoptosis, presents a promising and innovative approach to cancer treatment.</p
    corecore