184 research outputs found

    Innovative Method of Combing Multidecade Remote Sensing Data for Detecting Precollapse Elevation Changes of Glaciers in the Larsen B Region, Antarctica

    Get PDF
    The Antarctic Peninsula has undergone dramatic changes in recent decades, including ice-shelf melting, disintegration, and retreat of the grounding line. The Larsen B ice shelf is of particular concern due to the unprecedented ice-shelf collapse in 2002. Since few observations on the Antarctic Peninsula were available before the 1970s, long-term investigation of the surface elevation change in the Larsen B region could not be pursued. In 1995, the United States administration declassified a collection of archived intelligence satellite photographs from the 1960s to the 1970s, including analogue satellite images from the ARGON program covering parts of the Larsen B region. We chose overlapping ARGON photos captured in the Larsen B region in 1963. These photos were all subjected to a tailored photogrammetric stereo-matching process, which overcomes those specific challenges related to the use of historical satellite images, such as poor image quality, low resolution, and a lack of high-precision validation data. We discovered that between 1963 and 2001, the surface elevations of the main tributary glaciers in the Larsen B embayment have undergone little change before the ice shelf collapse from 1963 to 2001 by comparing the reconstructed ARGON-derived digital elevation model (DEM) (1963) and ASTER-derived DEM (2001). In addition, the results demonstrated that the hierarchical image matching method can be modified and applied to reconstruct a historical Antarctic DEM using satellite images acquired & SIM;60 years ago through an innovative and rigorous ground control point selection procedure that guarantees no changes occurred at these points over the period. The new ARGON-derived DEM derived from ARGON (1963) can be used to build a long-term spatiotemporal record of observations for extended analyses of ice-surface dynamics and mass balance in the Larsen B region

    A Comprehensive Overview of Backdoor Attacks in Large Language Models within Communication Networks

    Full text link
    The Large Language Models (LLMs) are poised to offer efficient and intelligent services for future mobile communication networks, owing to their exceptional capabilities in language comprehension and generation. However, the extremely high data and computational resource requirements for the performance of LLMs compel developers to resort to outsourcing training or utilizing third-party data and computing resources. These strategies may expose the model within the network to maliciously manipulated training data and processing, providing an opportunity for attackers to embed a hidden backdoor into the model, termed a backdoor attack. Backdoor attack in LLMs refers to embedding a hidden backdoor in LLMs that causes the model to perform normally on benign samples but exhibit degraded performance on poisoned ones. This issue is particularly concerning within communication networks where reliability and security are paramount. Despite the extensive research on backdoor attacks, there remains a lack of in-depth exploration specifically within the context of LLMs employed in communication networks, and a systematic review of such attacks is currently absent. In this survey, we systematically propose a taxonomy of backdoor attacks in LLMs as used in communication networks, dividing them into four major categories: input-triggered, prompt-triggered, instruction-triggered, and demonstration-triggered attacks. Furthermore, we conduct a comprehensive analysis of the benchmark datasets. Finally, we identify potential problems and open challenges, offering valuable insights into future research directions for enhancing the security and integrity of LLMs in communication networks

    Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations

    Get PDF
    Solar emission produces copious nitrosonium ions (NO+) in the D layer of the ionosphere, 60 to 90 km above the Earth’s surface. NO+ is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200–220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates—tetrahydrate NO+(H2O)4 and pentahydrate NO+(H2O)5—are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO+(H2O)4 exhibits a chainlike structure through which all of the lowest-energy isomersmust go. However, most lowest-energy isomers of pentahydrate NO+(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO+(H2O)4 and NO+(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation

    How is caring for grandchildren associated with grandparents’ health: the mediating effect of internet use

    Get PDF
    ObjectivePrior studies showed mixed results of the association between grandchild care and grandparents’ health. This research focused on the mechanisms behind the above link by studying how internet use served as a mediator through which grandchild care has impacted grandparents’ health. The study aimed to draw implications to improve health of grandparents who offer care to grandchildren.MethodsUsing a sample of 16,829 grandparents aged 50 through 80 from the 2018 wave of China Health and Retirement Longitudinal Study (CHARLS), the study relied on the KHB method to conduct the analysis. Grandparental health was measured by self-rated health (SRH), instrumental activity of daily living (IADL), life satisfaction and depression.ResultsOverall, grandchild care had a positive effect on grandparental health. Those who engaged in grandchild care were more likely to use internet. In addition, internet use mediated the ways in which grandchild care impacted grandparents’ health. Interne use generally promoted the positive influence of grandparental caregiving on grandparents’ health. Specifically, the mediating effects of watching videos and chatting through the internet were most pronounced among urban grandmothers. The mediating effects of watching news were most noticeable among both urban grandmothers and grandfathers.ConclusionInternet use served as a mediator in the association between grandchild child care and grandparental health. Promoting internet usage may be an effective way reducing the negative impact of grandchild care on grandparents’ mental health. It could also increase the positive effect of caregiving on grandparents’ SRH and functional independence. The study also underscored the importance of taking rural–urban context and gender role into consideration when studying intergenerational caregiving and Chinese grandparents’ health

    Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations

    Get PDF
    Solar emission produces copious nitrosonium ions (NO+) in the D layer of the ionosphere, 60 to 90 km above the Earth’s surface. NO+ is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200–220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates—tetrahydrate NO+(H2O)4 and pentahydrate NO+(H2O)5—are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO+(H2O)4 exhibits a chainlike structure through which all of the lowest-energy isomersmust go. However, most lowest-energy isomers of pentahydrate NO+(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO+(H2O)4 and NO+(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation

    User collusion avoidance scheme for privacy-preserving decentralized key-policy attribute-based encryption

    Get PDF
    Decentralized attribute-based encryption (ABE) is a variant of multi-authority based ABE whereby any attribute authority (AA) can independently join and leave the system without collaborating with the existing AAs. In this paper, we propose a user collusion avoidance scheme which preserves the user's privacy when they interact with multiple authorities to obtain decryption credentials. The proposed scheme mitigates the well-known user collusion security vulnerability found in previous schemes. We show that our scheme relies on the standard complexity assumption (decisional bilienar Deffie-Hellman assumption). This is contrast to previous schemes which relies on non-standard assumption (q-decisional Diffie-Hellman inversion)

    A Load Switching Group based Feeder-level Microgrid Energy Management Algorithm for Service Restoration in Power Distribution System

    Full text link
    This paper presents a load switching group based energy management system (LSG-EMS) for operating microgrids on a distribution feeder powered by one or multiple grid-forming distributed energy resources. Loads on a distribution feeder are divided into load switching groups that can be remotely switched on and off. The LSG-EMS algorithm, formulated as a mixed-integer linear programming (MILP) problem, has an objective function of maximizing the served loads while minimizing the total number of switching actions. A new set of topology constraints are developed for allowing multiple microgrids to be formed on the feeder and selecting the optimal supply path. Customer comfort is accounted for by maximizing the supply duration in the customer preferred service period and enforcing a minimum service duration. The proposed method is demonstrated on a modified IEEE 33-bus system using actual customer data. Simulation results show that the LSG-EMS successfully coordinates multiple grid-forming sources by selecting an optimal supply topology that maximizes the supply period of both the critical and noncritical loads while minimizing customer service interruptions in the service restoration process.Comment: 5 pages, 7 figures, submitted to 2021 IEEE PES General Meetin
    • …
    corecore