463 research outputs found

    基于Scopus的植物表型组学研究进展分析

    Get PDF
    Bibliometric analyses are capable of demonstrating the history and the tendency of scientific and technological development. This article aims to use big scientific data to explore the present status of plant phenomics, based on which sound recommendations could be provided for the development of this emerging research domain. [Methods] Based on academic outputs such as research publications, citations, collaborations, research areas, academic organizations, and authors retrieved from the Scopus database between 2013 and September 2018, statistical analysis tools such as SciVal and CiteSpace 5.0 were applied to quantitatively visualize the development and tendency of plant phenotyping, plant phenomics, and related research areas. [Results] This Scopus-based research has retrieved 20 953 articles that are related to plant phenotyping, plant phenomics, and related applications in plant research, with a total citation of 217 105 and 2.0% of them are TOP1% highly cited papers. According to total citations, the TOP10 countries are the United States, China, Germany, the United Kingdom, France, Japan, Australia, Spain, Canada, and the Netherlands. The TOP10 research organizations based on total citations are Chinese Academy of Sciences (CAS), Institut National de la Recherche Agronomique (INRA), the US Department of Agriculture, Centre National de la Recherche Scientifique (CNRS), Chinese Academy of Agricultural Sciences, Cornell University, Spanish National Research Council, University of California at Davis, Universite Paris-Sacly, and Wageningen University & Research. The scholar with the most academic outputs is Alisdair Robert Fernie at the Koch Planck Institute of Molecular Plant Physiology, Germany. He has published 58 papers using plant cellular phenotypes and was cited 1 246 times. At present, plant phenomics research has focused on a number of plant species, including Arabidopsis, rice, wheat, corn, tomato and soybean. [Conclusion] As an emerging research domain, plant phenomics requires interdisciplinary efforts to integrate agriculture, cultivation, breeding, and other plant biological research with computing sciences. In particular, high-throughput image analysis and related data analysis has become an important research theme at the present stage, with the topical saliency index reaches 98.8%, a very high relevance score

    Research Progress in Preparation and Application in Intelligent and Active Packaging of Carbon Dots from Food Processing By-products

    Get PDF
    As an emerging nanoparticle, carbon dots (CDs) have been widely used in the fields of chemical sensing, biological imaging, drug delivery, photocatalyst and food detection due to its superior biocompatibility and photoluminescence. Food processing by-products come from a wide range of sources and are easy to obtain. Moreover, the surface of CDs prepared from food processing by-products is usually rich in functional groups and miscellaneous elements, imparting excellent photocatalytic, antioxidant and antibacterial properties to CDs. In recent years, CDs have been used as food packaging additives to enhance the ultraviolet (UV) shielding, mechanical, antioxidant and antibacterial properties of food packaging. In this paper, the types of food processing by-products that can be used to prepare CDs and natural polymer-based films added with CDs and the application of CDs in active and intelligent packaging are reviewed in order to provide guidance for the preparation of CDs from food processing by-products and its application in food packaging

    Towards Language-guided Visual Recognition via Dynamic Convolutions

    Full text link
    In this paper, we are committed to establishing an unified and end-to-end multi-modal network via exploring the language-guided visual recognition. To approach this target, we first propose a novel multi-modal convolution module called Language-dependent Convolution (LaConv). Its convolution kernels are dynamically generated based on natural language information, which can help extract differentiated visual features for different multi-modal examples. Based on the LaConv module, we further build the first fully language-driven convolution network, termed as LaConvNet, which can unify the visual recognition and multi-modal reasoning in one forward structure. To validate LaConv and LaConvNet, we conduct extensive experiments on four benchmark datasets of two vision-and-language tasks, i.e., visual question answering (VQA) and referring expression comprehension (REC). The experimental results not only shows the performance gains of LaConv compared to the existing multi-modal modules, but also witness the merits of LaConvNet as an unified network, including compact network, high generalization ability and excellent performance, e.g., +4.7% on RefCOCO+

    Privacy-Preserving Face Recognition with Learnable Privacy Budgets in Frequency Domain

    Full text link
    Face recognition technology has been used in many fields due to its high recognition accuracy, including the face unlocking of mobile devices, community access control systems, and city surveillance. As the current high accuracy is guaranteed by very deep network structures, facial images often need to be transmitted to third-party servers with high computational power for inference. However, facial images visually reveal the user's identity information. In this process, both untrusted service providers and malicious users can significantly increase the risk of a personal privacy breach. Current privacy-preserving approaches to face recognition are often accompanied by many side effects, such as a significant increase in inference time or a noticeable decrease in recognition accuracy. This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain. Due to the utilization of differential privacy, it offers a guarantee of privacy in theory. Meanwhile, the loss of accuracy is very slight. This method first converts the original image to the frequency domain and removes the direct component termed DC. Then a privacy budget allocation method can be learned based on the loss of the back-end face recognition network within the differential privacy framework. Finally, it adds the corresponding noise to the frequency domain features. Our method performs very well with several classical face recognition test sets according to the extensive experiments.Comment: ECCV 2022; Code is available at https://github.com/Tencent/TFace/tree/master/recognition/tasks/dctd

    Metadata Caching in Presto: Towards Fast Data Processing

    Full text link
    Presto is an open-source distributed SQL query engine for OLAP, aiming for "SQL on everything". Since open-sourced in 2013, Presto has been consistently gaining popularity in large-scale data analytics and attracting adoption from a wide range of enterprises. From the development and operation of Presto, we witnessed a significant amount of CPU consumption on parsing column-oriented data files in Presto worker nodes. This blocks some companies, including Meta, from increasing analytical data volumes. In this paper, we present a metadata caching layer, built on top of the Alluxio SDK cache and incorporated in each Presto worker node, to cache the intermediate results in file parsing. The metadata cache provides two caching methods: caching the decompressed metadata bytes from raw data files and caching the deserialized metadata objects. Our evaluation of the TPC-DS benchmark on Presto demonstrates that when the cache is warm, the first method can reduce the query's CPU consumption by 10%-20%, whereas the second method can minimize the CPU usage by 20%-40%.Comment: 5 pages, 8 figure

    Risk factors for falls among community-dwelling older adults: A systematic review and meta-analysis

    Get PDF
    Background and objectiveThe prevalence of falls among older adults living in the community is ~30% each year. The impacts of falls are not only confined to the individual but also affect families and the community. Injury from a fall also imposes a heavy financial burden on patients and their families. Currently, there are different reports on the risk factors for falls among older adults in the community. A retrospective analysis was used in this study to identify risk factors for falls in community-dwelling older adults. This research aimed to collect published studies to find risk factors for falls in community-dwelling older adults.MethodsWe searched for literature from the founding of PubMed, EMBASE, the Cochrane Library, the Web of Science, the China National Knowledge Infrastructure (CNKI), the China Science and Technology Periodicals Database (VIP), and the Wanfang database until September 2022. The studies were selected using inclusion and exclusion criteria. We collected information from relevant studies to compare the impact of potential risk factors such as age, female gender, fear of falling, history of falls, unclear vision, depression, and balance disorder on falls among community-dwelling older adults.ResultsA total of 31 studies were included with 70,868 community seniors. A significant risk factor for falls in the community of older adults was dementia (2.01, 95% CI: 1.41–2.86), age (1.15, 95% CI: 1.09–1.22), female gender (1.52, 95% CI: 1.27–1.81), fear of falling (2.82, 95% CI: 1.68–4.74), history of falls (3.22, 95% CI: 1.98–5.23), vision unclear (1.56, 95% CI: 1.29–1.89), depression (1.23, 95% CI: 1.10–1.37), and balance disorder (3.00, 95% CI: 2.05–4.39).ConclusionThis study provides preliminary evidence that falls among community-dwelling older adults are associated with factors such as age, female gender, fear of falling, history of falls, unclear vision, depression, and balance disorders. The results of this research may help improve clinician awareness, risk stratification, and fall prevention among community-dwelling older adults.Systematic review registrationidentifier INPLASY2022120080
    corecore