68 research outputs found

    Apoptotic effect of selenium mushroom extract from Qinba on multiple myeloma cells

    Get PDF
    Qinba selenium mushroom is a mushroom belonging to the Basidiomycetes family, which is believed to have anti- oxidant, anti-tumoral and antimutagenic activities. However, the efficacy of Qinba selenium mushroom against multiple myeloma has not been confirmed. The present study aimed to investigate the apoptotic effect of FA-2-b-β, the selenium mushroom extract from Qinba on multiple myeloma (MM) cells. The MM RPMI-8226 cells were treated with FA-2-b-β at different concentrations and time points. MM RPMI8226 cell proliferation and apoptosis were detected by the Cell Counting Kit-8 (CCK-8) assay and Annexin V/propidium iodide (PI) assay, RT-QPCR and western blotting analyses were performed to determine the proteins and pathways involved. The results of the present study demonstrated that FA-2-b-β has high antiproliferative activities and strong pro-apoptotic effects on MM RPMI-8226 cells, and its pharmacological effects on proliferation changes occurred in a dose- and time-dependent manner. In addition, we found that FA2-b-β was able to induce cell apoptosis and promote cell cycle arrest at G0/G1 phase. In summary, the results illustrate the involvement of FA-2-b-β in mediating G0/G1 cell cycle arrest and apoptosis in MM RPMI8226 cells, which suggested that FA-2-b-β might have therapeutic potential against multiple myeloma as an effective compound, and may provide useful information for the development of a novel therapeutic target in this area

    The determinants and effects of voluntary adoption of a cumulative voting system: evidence from China

    Get PDF
    Using a unique sample of China’s listed firms, we find that firms with strong corporate governance are more likely to adopt the cumulative voting system (CVS) and CVS adoption improves firm performance. Further analyses show that the positive relationship between CVS adoption and firm performance is more significant for firms with less mutual funds’ ownership, in a weak firm information environment, and whose managers have more power. Finally, we find three channels – professionalism of board directors, controlling shareholders’ expropriation, and managerial entrenchment– through which CVS adoption affects firm performance. This study enriches the literature on corporate governance in general and the literature on the principalprincipal problems in particular. Our findings also have important policy implications for minority shareholder protection

    The Tianlai Cylinder Pathfinder array: System functions and basic performance analysis

    Get PDF
    The Tianlai Cylinder Pathfinder is a radio interferometer array designed to test techniques for 21 cm intensity mapping in the post-reionization Universe, with the ultimate aim of mapping the large scale structure and measuring cosmological parameters such as the dark energy equation of state. Each of its three parallel cylinder reflectors is oriented in the north-south direction, and the array has a large field of view. As the Earth rotates, the northern sky is observed by drift scanning. The array is located in Hongliuxia, a radio-quiet site in Xinjiang, and saw its first light in September 2016. In this first data analysis paper for the Tianlai cylinder array, we discuss the sub-system qualification tests, and present basic system performance obtained from preliminary analysis of the commissioning observations during 2016-2018. We show typical interferometric visibility data, from which we derive the actual beam profile in the east-west direction and the frequency band-pass response. We describe also the calibration process to determine the complex gains for the array elements, either using bright astronomical point sources, or an artificial on site calibrator source, and discuss the instrument response stability, crucial for transit interferometry. Based on this analysis, we find a system temperature of about 90 K, and we also estimate the sensitivity of the array

    Altered Expression of Genes in Signaling Pathways Regulating Proliferation of Hematopoietic Stem and Progenitor Cells in Mice with Subchronic Benzene Exposure

    No full text
    Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage- sca-1+ c-kit+ (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch 1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity

    Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    No full text
    Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity

    Military Experience and Stock Price Crash Risk: Evidence from China

    No full text

    Investigation into Variation of Endogenous Metabolites in Bone Marrow Cells and Plasma in C3H/He Mice Exposed to Benzene

    No full text
    Benzene is identified as a carcinogen. Continued exposure of benzene may eventually lead to damage to the bone marrow, accompanied by pancytopenia, aplastic anemia or leukemia. This paper explores the variations of endogenous metabolites to provide possible clues for the molecular mechanism of benzene-induced hematotoxicity. Liquid chromatography coupled with time of flight-mass spectrometry (LC-TOF-MS) and principal component analysis (PCA) was applied to investigate the variation of endogenous metabolites in bone marrow cells and plasma of male C3H/He mice. The mice were injected subcutaneously with benzene (0, 300, 600 mg/day) once daily for seven days. The body weights, relative organ weights, blood parameters and bone marrow smears were also analyzed. The results indicated that benzene caused disturbances in the metabolism of oxidation of fatty acids and essential amino acids (lysine, phenylalanine and tyrosine) in bone marrow cells. Moreover, fatty acid oxidation was also disturbed in plasma and thus might be a common disturbed metabolic pathway induced by benzene in multiple organs. This study aims to investigate the underlying molecular mechanisms involved in benzene hematotoxicity, especially in bone marrow cells

    miR-93-5p knockdown repressed hepatocellular carcinoma progression via increasing ERBB4 and TETs-dependent DNA demethylation

    No full text
    Background microRNAs (miRNAs) are involved in hepatocellular carcinoma (HCC) development and can control gene expression via directly targeting or regulating DNA methylation. This research aims to analyse the mechanism of miR-93-5p on HCC progression. Methods miR-93-5p, Erb-B2 receptor tyrosine kinase 4 (ERBB4) and ten-eleven translocation methyl-cytosine dioxygenases (TET1, TET2 and TET3) abundances were measured via quantitative reverse transcription polymerase chain reaction and Western blotting. The binding interaction was examined by dual-luciferase reporter analysis and chromatin immunoprecipitation. Cell proliferation and apoptosis were assessed via Cell Counting Kit-8, colony formation and flow cytometry. The DNA methylation of ERBB4 was detected via specific polymerase chain reaction. SNU-449 cells were subcutaneously inoculated into the BALB/c nude mice to establish the in vivo model for HCC, and the in vivo function of miR-93-5p was analysed by intratumoral injections of miR-93-5p antogomir. Results miR-93-5p abundance was enhanced and ERBB4 level was reduced in HCC tumour tissues of 62 patients and HCC cell lines, in contrast with that in paired normal tissues of 62 patients and normal cell lines. ERBB4 was targeted by miR-93-5p. miR-93-5p knockdown or ERBB4 overexpression repressed HCC cell proliferation and promoted apoptosis via decreasing cell viability and colony ability and inducing cycle arrest. ERBB4 silence attenuated the influence of miR-93-5p knockdown on cell proliferation and apoptosis. ERBB4 promoter DNA methylation level was enhanced in HCC samples and cell lines, and ERBB4 abundance was increased via TETs (TET1, TET2 and TET3). miR-93-5p targeted TETs to modulate ERBB4 abundance. TETs silence relieved the influence of miR-93-5p knockdown on cell proliferation and apoptosis. miR-93-5p knockdown decreased HCC growth in a xenograft model. Conclusion miR-93-5p knockdown repressed the progression of HCC via increasing ERBB4 and TETs-dependent DNA demethylation
    corecore