4 research outputs found

    The anomalous Hall effect controlled by residual epitaxial strain in antiferromagnetic Weyl semimetal Mn3Sn thin films grown by molecular beam epitaxy

    No full text
    The large anomalous Hall effect (AHE) in antiferromagnetic(AFM) Weyl semimetal Mn3Sn attracts intensive attentions in spintronics. Here, we report the structural property of high quality Mn3Sn thin film on insulator substrate MgO(110) by molecular beam epitaxy (MBE), and AHE in control of residual mismatch strain between Mn3Sn film and substrate. We are able to grow strain-free Mn3Sn(10 1ÂŻ 0) films or alternatively strained Mn3Sn(11 2ÂŻ 0) films via a three-step process. The strain-free Mn3Sn film has large anomalous Hall conductivity up to 30 Ω-1cm−1 at room temperature, which is comparable to bulk Mn3Sn. In contrast, AHE is switched off in strained Mn3Sn film due to piezomagnetic effect under a uniaxial compress strain of ∌2.0%. These findings provide a deeper understanding on AFM spintronic applications

    Multifunctional Optoelectronic Synapses Based on Arrayed MoS2 Monolayers Emulating Human Association Memory

    No full text
    Abstract Optoelectronic synaptic devices integrating light‐perception and signal‐storage functions hold great potential in neuromorphic computing for visual information processing, as well as complex brain‐like learning, memorizing, and reasoning. Herein, the successful growth of MoS2 monolayer arrays assisted by gold nanorods guided precursor nucleation is demonstrated. Optical, spectral, and morphology characterizations of MoS2 prove that arrayed flakes are homogeneous monolayers, and they are further fabricated as optoelectronic devices showing featured photocurrent loops and stable optical responses. Typical synaptic behaviors of photo‐induced short‐term potentiation, long‐term potentiation, and paired pulse facilitation are recorded under different light stimulations of 450, 532, and 633 nm lasers at various excitation powers. A visual sensing system consisting of 5 × 6 pixels is constructed to simulate the light‐sensing image mapped by forgetting curves in real time. Moreover, the system presents the ability of utilizing associated images to restore vague and incomplete memories, which successfully mimics human intelligent behaviors of association memory and logical reasoning. The work emulates the brain‐like artificial intelligence using arrayed 2D semiconductors, which paves an avenue to achieve smart retina and complex brain‐like system
    corecore