10 research outputs found

    First results from in situ transmission electron microscopy studies of all-solid-state fluoride ion batteries

    Get PDF
    A focused ion beam (FIB) system is used to fabricate a micron-sized all-solid-state fluoride ion cell from a bulk battery for in situ transmission electron microscopy (TEM) testing. The bulk battery is based on a La0·9Ba0·1F2.9 solid-state electrolyte with a nanocomposite of Cu/C as a cathode and a nanocomposite of MgF2, Mg, La0·9Ba0·1F2.9 and C as an anode. The evolution of the morphology, structure, and composition of the electrodes and their interfaces with the electrolyte is characterized using in-situ TEM during electrochemical cycling. The high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy-energy dispersive X-ray (STEM-EDX) analysis of the cathode-electrolyte interface reveal the expected formation of CuF2 phase during charging. During cycling, grain growth of Cu in the cathode ingredients and Cu diffusion from the cathode into the electrolyte are observed in addition to void formation

    Electrochemical fluorination of perovskite type BaFeO2.5

    No full text
    Here we report on the first electrochemical fluorination exemplarily performed on perovskite type BaFeO2.5. A cell setup of the type BaFeO2.5 II La0.9Ba0.1F2.9 II MFx (with MFx being MgF2 and CeF3) was used to perform the reaction, charging the cell up to voltages of about 4 V. Formation of a compound of approximate composition BaFeO2.5F[similar]0.5 was observed, in agreement with diffraction studies of the independently performed chemically fluorinated compound using F2 gas, and also possessing a capacity which is close to the theoretical capacity of the material. This new method gives an alternative towards the use of highly reactive and toxic F2 gas, and provides potential in adjusting the chemical potential for oxidative chemical fluorinations

    Nanostructured Fluorite-Type Fluorides As Electrolytes for Fluoride Ion Batteries

    No full text
    Fluoride ion batteries (FIB) provide an interesting alternative to lithium ion batteries, in particular because of their larger theoretical energy densities. These batteries are based on a F anion shuttle between a metal fluoride cathode and a metal anode. One critical component is the electrolyte that should provide fast anion conduction. So far, this is only possible in solid so-called superionic conductors, at elevated temperatures. Herein, we analyze in detail the ionic conductivity in barium fluoride salts doped with lanthanum (Ba<sub>1–<i>x</i></sub>La<sub><i>x</i></sub>F<sub>2+<i>x</i></sub>). Doping by trivalent cations leads to an increase of the quantity of point defects in the BaF<sub>2</sub> crystal. These defects participate in the ionic motion and therefore improve the ionic conductivity. We demonstrate that further improvement of the conductivity is possible by using a nanostructured material providing additional conduction paths through the grain boundaries. Using electrochemical impedance spectroscopy and AC conductivity analysis, we show that the ionic conduction in this material is controlled by the motion of vacancies through the grain boundaries. The mobility of the vacancies is influenced by the quantity of dopant but decrease for too large dopant concentrations. The optimum compositions having the highest conductivities are Ba<sub>0.6</sub>La<sub>0.4</sub>F<sub>2.4</sub> and Ba<sub>0.7</sub>La<sub>0.3</sub>F<sub>2.3</sub>. The compound Ba<sub>0.6</sub>La<sub>0.4</sub>F<sub>2.4</sub> was successfully used as an electrolyte in a FIB

    Solid Electrolytes for Fluoride Ion Batteries: Ionic Conductivity in Polycrystalline Tysonite-Type Fluorides

    No full text
    Batteries based on a fluoride shuttle (fluoride ion battery, FIB) can theoretically provide high energy densities and can thus be considered as an interesting alternative to Li-ion batteries. Large improvements are still needed regarding their actual performance, in particular for the ionic conductivity of the solid electrolyte. At the current state of the art, two types of fluoride families can be considered for electrolyte applications: alkaline-earth fluorides having a fluorite-type structure and rare-earth fluorides having a tysonite-type structure. As regard to the latter, high ionic conductivities have been reported for doped LaF<sub>3</sub> single crystals. However, polycrystalline materials would be easier to implement in a FIB due to practical reasons in the cell manufacturing. Hence, we have analyzed in detail the ionic conductivity of La<sub>1–<i>y</i></sub>Ba<sub><i>y</i></sub>F<sub>3–<i>y</i></sub> (0 ≤ <i>y</i> ≤ 0.15) solid solutions prepared by ball milling. The combination of DC and AC conductivity analyses provides a better understanding of the conduction mechanism in tysonite-type fluorides with a blocking effect of the grain boundaries. Heat treatment of the electrolyte material was performed and leads to an improvement of the ionic conductivity. This confirms the detrimental effect of grain boundaries and opens new route for the development of solid electrolytes for FIB with high ionic conductivities

    In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges

    No full text
    Trustworthy preparation and contacting of micron‐sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all‐solid‐state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all‐solid‐state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9Ba0.1F2.9 half‐cell are presented

    Effect of Transition Metal Fluorides on the Sorption Properties and Reversible Formation of Ca(BH4)(2)

    No full text
    Light metal borohydrides are considered as promising materials for solid state hydrogen storage. Because of the high hydrogen content of 11.5 wt % and the rather low dehydrogenation enthalpy of 32 kJ mol(-1)H(2), Ca(BH4)(2) is considered to be one of the most interesting compounds in this class of materials. In the present work, the effect of selected TM-fluoride (TM = transition metal) additives on the reversible formation of Ca(BH4)(2) was investigated by means of thermovolumetric, calorimetric, Fourier transform infrared spectroscopy, and ex situ, and in situ synchrotron radiation powder X-ray diffraction (SR-PXD) measurements. Furthermore, selected desorbed samples were analyzed by B-11{H-1} solid state magic angle spinning nuclear magnetic resonance (MAS NMR). Under the conditions used in this study (145 bar H-2 pressure and 350 degrees C), TiF4 and NbF5 were the only additives causing partial reversibility. In these two cases, B-11{H-1} MAS NMR analyses detected CaB6 and likely CaB12H12 in the dehydrogenation products. Elemental boron was found in the decomposition products of Ca(BH4)(2) samples with VF4, TiF3, and VF3. The results indicate an important role of CaB6 for the reversible formation of Ca(BH4)(2)
    corecore