25 research outputs found

    Factors influencing householder self-evacuation in two Australian bushfires

    Get PDF
    The thesis investigated householder self-evacuation decision-making during bushfires in the Perth and Adelaide Hills in 2014 and 2015. It explored the factors that influenced householders’ decisions to evacuate, identified factors that predict self-evacuation and established the characteristics of self-evacuators. The Protective Action Decision Model (PADM) provided a conceptual framework for the research. Its theoretical and analytical usefulness in an Australian context, was assessed. A mixed methods research strategy was used involving quantitative telephone surveys of 457 bushfire-affected participants and face-to-face interviews of 109 participants in 59 households. The study concluded that environmental and social cues and warnings and householders’ perceptions of the threat, of hazard adjustments and of other stakeholders, influenced self-evacuation decision-making. Protective action perceptions, particularly the effectiveness of evacuating or not evacuating in protecting personal safety or property, were most important in predicting self-evacuation. Receipt of official warnings and the perception of likely impact of the bushfire on property were also important predictors. Undertaking long-run hazard adjustments, although not predictive of self-evacuation, was pivotal in shaping perceptions of the effectiveness of evacuating and remaining in protecting personal safety and property and indirectly influenced evacuation decisions. Seven archetypes that characterised householders’ self-evacuation attitudes and behaviour were identified. These included Threat, and Responsibility Deniers, Dependent, and Considered Evacuators, Community Guided and Experienced Independents all who took different decisional ‘rules of thumb’ and routes toward evacuating or remaining . The PADM needs to be split into two separate models to incorporate the influence of long-run hazard adjustments on protective action decision-making in an Australian bushfire. The findings suggest that future research on those who wait and see during a bushfire should take account of their decisional rules of thumb and that design and targeting of Australian bushfire safety policy should better account for self-evacuator characteristics

    Numerical Simulation Study of Booming Effect in Fast Currents of Inland River

    No full text
    In the downstream tidal section of the Yangtze River, nine kinds of combinations of hydrological environmental conditions are considered, including the annual average runoff flow, the annual average peak flow and the flood control design flow, as well as the three conditions of spring, medium and neap tides. By means of the numerical simulation method, the effective performance parameter values for conventional intercepting boom under different environmental conditions are obtained by simulating 9 kinds of maximum current speed to withstand, Max.CS, respectively. The results show that, in the downstream fast current tidal section of the Yangtze River, for the boom performance index of Max.CS, the relatively extensive applicability value should be 3.0kn under the condition of the annual average runoff flow; 4.0Kn should be selected under the condition of the annual average peak flow; and 4.5Kn should be selected under the flood control design flow. This study can provide technical support for the design, selection and use of booms in downstream waters of the Yangtze River

    Numerical Simulation Study of Booming Effect in Fast Currents of Inland River

    No full text
    In the downstream tidal section of the Yangtze River, nine kinds of combinations of hydrological environmental conditions are considered, including the annual average runoff flow, the annual average peak flow and the flood control design flow, as well as the three conditions of spring, medium and neap tides. By means of the numerical simulation method, the effective performance parameter values for conventional intercepting boom under different environmental conditions are obtained by simulating 9 kinds of maximum current speed to withstand, Max.CS, respectively. The results show that, in the downstream fast current tidal section of the Yangtze River, for the boom performance index of Max.CS, the relatively extensive applicability value should be 3.0kn under the condition of the annual average runoff flow; 4.0Kn should be selected under the condition of the annual average peak flow; and 4.5Kn should be selected under the flood control design flow. This study can provide technical support for the design, selection and use of booms in downstream waters of the Yangtze River

    Improved Electric Power Training Scheme Based on Memory Curve and Application

    No full text

    Influence of microstructure on tensile properties and fatigue crack growth in extruded magnesium alloy AM60

    No full text
    The microstructure, mechanical properties and fatigue crack propagation (FCP) of extruded magnesium alloy AM60 were investigated and compared with rolled AM60. The extruded AM60 has an inhomogeneous microstructure characterized by alpha-matrix, beta phases and Al-Mn precipitates and denuded zones as well, whereas rolled AM60 has fine grains. The change in strain-hardening exponent of extruded AM60 with strain rate is ascribed to inhomogeneous microstructure. In situ double twinning: (10 (1) over bar2) - (01 (1) over bar2) and {10 (1) over bar1} - {10 (1) over bar2} occurred during FCP of extruded alloy. Its crack initiation and growth are related to slip bands, double twinning and intermetallic compounds. Small cracks resulted from oxide and intermetallic compounds in rolled AM60 may be responsible for oscillatory crack growth and crack arrest. Extruded AM60 has a slower FCP rate than rolled one. (C) 2009 Elsevier Ltd. All rights reserved

    Automated stratigraphic correlation of well logs using Attention Based Dense Network

    No full text
    The stratigraphic correlation of well logs plays an essential role in characterizing subsurface reservoirs. However, it suffers from a small amount of training data and expensive computing time. In this work, we propose the Attention Based Dense Network (ASDNet) for the stratigraphic correlation of well logs. To implement the suggested model, we first employ the attention mechanism to the input well logs, which can effectively generate the weighted well logs to serve for further feature extraction. Subsequently, the DenseNet is utilized to achieve good feature reuse and avoid gradient vanishing. After model training, we employ the ASDNet to the testing data set and evaluate its performance based on the well log data set from Northwest China. Finally, the numerical results demonstrate that the suggested ASDNet provides higher prediction accuracy for automated stratigraphic correlation of well logs than state-of-the-art contrastive UNet and SegNet

    Prophylactic antibiotics for preventing ventilator-associated pneumonia: a pairwise and Bayesian network meta-analysis

    No full text
    Abstract Background The role of prophylactic antibiotics in preventing ventilator-associated pneumonia (VAP) in patients undergoing invasive mechanical ventilation (IMV) remains unclear. This network meta-analysis compared the efficacy and safety of antibiotic prophylaxis in preventing VAP in an IMV population in intensive-care units (ICUs). Methods We searched the PubMed, Web of Science, Embase, and Cochrane Library databases from inception to December 2021, to identify relevant studies assessing the impact of prophylactic antibiotics on the incidence of VAP, the mortality, and the duration of ICU stays and hospitalization to perform a meta-analysis. Results Thirteen studies (2144 patients) were included, 12 of which were selected for the primary analysis, which revealed that treatment with prophylactic antibiotics resulted in a lower VAP rate compared with control groups [risk ratio (RR) = 0.62]. Bayesian network meta-analysis indicated that aerosolized tobramycin and intravenous ampicillin–sulbactam presented the greatest likelihood being the most efficient regimen for reducing VAP. Conclusions Antibiotic prophylaxis may reduce the incidence of VAP, but not the mortality, for adult patients undergoing IMV in ICUs. Tobramycin via nebulization and ampicillin–sulbactam via intravenous administration presented the greatest likelihood of being the most efficient regimen for preventing VAP. However, well-designed randomized studies are warranted before definite recommendations can be made

    High-Surface-Area Metalloporphyrin-Based Porous Ionic Polymers by the Direct Condensation Strategy for Enhanced CO<sub>2</sub> Capture and Catalytic Conversion into Cyclic Carbonates

    No full text
    Metalloporphyrin-based porous organic polymers (POPs) that behave as advanced biomimetic nanoreactors have drawn continuous attention for heterogeneous CO2 catalysis in the past decades. Inspired by the double activation model of epoxides, the design and synthesis of metalloporphyrin-based porous ionic polymers (PIPs) are considered as one of the most promising approaches for converting CO2 to cyclic carbonates under cocatalyst- and solvent-free conditions. To overcome the obstacle of poor reaction activity of ionic monomers or highly irregular stacking architecture, in this paper, we have proposed and demonstrated a modular bottom-up approach for constructing a series of high-surface-area metalloporphyrin-based PIPs in high yields by the direct condensation strategy, thus boosting the close contact of multiple active sites and achieving the enhanced CO2 capture and catalytic conversion into cyclic carbonates with high turnover frequencies under mild conditions. These recyclable aluminum–porphyrin-based PIPs are featured with high surface areas, prominent CO2 adsorptive capacities, rigid porphyrin skeletons, and flexible ionic pendants, as well as the matched amounts and spatial positions of metal centers and ionic sites, in which is demonstrated to be one of the quite competitive catalysts. Therefore, this strategy of introducing ionic components into the porphyrin frameworks as flexible side chains rather than main chains and adjusting the reactivity ratios of comonomers by structure-oriented methods, provides feasible guidance for the multifunctionalization of metalloporphyrin-based POPs, thereby increasing the accessibility of multiple active sites and improving their synergistic catalytic behavior
    corecore