34 research outputs found

    Magnetic Nanosized {M<sup>II</sup><sub>24</sub>}-Wheel-Based (M = Co, Ni) Coordination Polymers

    No full text
    Two 3D coordination polymers, [Co<sub>24</sub>(OH)<sub>12</sub>(SO<sub>4</sub>)<sub>12</sub>(ip)<sub>6</sub>(DMSO)<sub>18</sub>(H<sub>2</sub>O)<sub>6</sub>]·­(DMSO)<sub>6</sub>­(EtOH)<sub>6</sub>(H<sub>2</sub>O)<sub>36</sub> (<b>1</b>·guests, ip = isophthalate) and [Ni<sub>24</sub>(OH)<sub>12</sub>(SO<sub>4</sub>)<sub>12</sub>(ip)<sub>6</sub>(DMSO)<sub>12</sub>(H<sub>2</sub>O)<sub>12</sub>]·­(DMSO)<sub>6</sub>­(EtOH)<sub>6</sub>(H<sub>2</sub>O)<sub>20</sub> (<b>2</b>·guests), constructed with nanosized tetraicosanuclear Co<sup>II</sup> and Ni<sup>II</sup> wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions

    Magnetic Nanosized {M<sup>II</sup><sub>24</sub>}-Wheel-Based (M = Co, Ni) Coordination Polymers

    No full text
    Two 3D coordination polymers, [Co<sub>24</sub>(OH)<sub>12</sub>(SO<sub>4</sub>)<sub>12</sub>(ip)<sub>6</sub>(DMSO)<sub>18</sub>(H<sub>2</sub>O)<sub>6</sub>]·­(DMSO)<sub>6</sub>­(EtOH)<sub>6</sub>(H<sub>2</sub>O)<sub>36</sub> (<b>1</b>·guests, ip = isophthalate) and [Ni<sub>24</sub>(OH)<sub>12</sub>(SO<sub>4</sub>)<sub>12</sub>(ip)<sub>6</sub>(DMSO)<sub>12</sub>(H<sub>2</sub>O)<sub>12</sub>]·­(DMSO)<sub>6</sub>­(EtOH)<sub>6</sub>(H<sub>2</sub>O)<sub>20</sub> (<b>2</b>·guests), constructed with nanosized tetraicosanuclear Co<sup>II</sup> and Ni<sup>II</sup> wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions

    Co-ligand and Solvent Effects on the Spin-Crossover Behaviors of PtS-type Porous Coordination Polymers

    No full text
    In our previous work (Chen, X.-Y.; Chem. Commun. 2013, 49, 10977−10979), we have reported the crystal structure and spin-crossover properties of a compound [Fe­(NCS)<sub>2</sub>­(tppm)]·<i>S</i> [<b>1</b>·<i>S</i>, tppm = 4,4′,4″,4‴-tetrakis­(4-pyridyl­ethen-2-yl)­tetraphenylmethane, <i>S</i> = 5CH<sub>3</sub>OH·​2CH<sub>2</sub>Cl<sub>2</sub>]. Here, its analogues [Fe­(X)<sub>2</sub>­(tppm)]·<i>S</i> [X = NCSe<sup>–</sup>, NCBH<sub>3</sub><sup>–</sup>, and N­(CN)<sub>2</sub><sup>–</sup> for compounds <b>2</b>·<i>S</i>, <b>3</b>·<i>S</i>, and <b>4</b>·<i>S</i>, respectively] have been synthesized and characterized by variable-temperature X-ray diffraction and magnetic measurements. The crystal structure analyses of <b>2</b>·<i>S</i> and <b>3</b>·<i>S</i> reveal that both compounds possess the same topologic framework (PtS-type) building from the tetrahedral ligand tppm and planar unit FeX<sub>2</sub>; the framework is two-fold self-interpenetrated to achieve one-dimensional open channels occupied by solvent molecules. Powder X-ray diffraction study indicates the same crystal structure for <b>4</b>. The average values of Fe–N distances observed, respectively, at 100, 155, and 220 K for the Fe1/Fe2 centers are 1.969/2.011, 1.970/2.052, and 2.098/2.136 Å for <b>2</b>·<i>S</i>, whereas those at 110, 175, and 220 K are 1.972/2.013, 1.974/2.056, and 2.100/2.150 Å for <b>3</b>·<i>S</i>, indicating the presence of a two-step spin crossover in both compounds. Temperature-dependent magnetic susceptibilities (χ<sub>M</sub><i>T</i>) confirm the two-step spin-crossover behavior at 124 and 200 K in <b>2</b>·<i>S</i>, 151 and 225 K in <b>3</b>·<i>S</i>, and 51 and 126 K in <b>4</b>·<i>S</i>, respectively. The frameworks of <b>2</b>–<b>4</b> are reproducible upon solvent exchange and thereafter undergo solvent-dependent spin-crossover behaviors

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    Noticiero de Vigo : diario independiente de la mañana: Ano XXVIII Número 11523 - 1913 maio 16

    No full text
    A dinuclear valence tautomeric compound containing a cationic structure with crystallographically distinguishable <i>hs</i>-Co<sup>II</sup> and <i>ls</i>-Co<sup>III</sup> centers undergoes unidirectional charge transfer

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions
    corecore