13,940 research outputs found

    An in-host model of HIV incorporating latent infection and viral mutation

    Full text link
    We construct a seven-component model of the in-host dynamics of the Human Immunodeficiency Virus Type-1 (i.e, HIV) that accounts for latent infection and the propensity of viral mutation. A dynamical analysis is conducted and a theorem is presented which characterizes the long time behavior of the model. Finally, we study the effects of an antiretroviral drug and treatment implications.Comment: 10 pages, 7 figures, Proceedings of AIMS Conference on Differential Equations and Dynamical Systems (2015

    Crossing point phenomena (T* = 2.7 K) in specific heat curves of superconducting ferromagnets RuSr2Gd1.4Ce0.6Cu2O10-{\delta}

    Get PDF
    Crossing point phenomena are one of the interesting and still puzzling effects in strongly correlated electron systems. We have synthesized RuSr2Gd1.4Ce0.6Cu2O10-{\delta} (GdRu-1222) magneto-superconductor through standard solid state reaction route and measured its magnetic, transport and thermal properties. We also synthesized RuSr2Eu1.4Ce0.6Cu2O10-{\delta} (EuRu-1222) then measured its heat capacity in zero magnetic fields for reference. The studied compounds crystallized in tetragonal structure with space group I4/mmm. GdRu-1222 is a reported magneto-superconductor with Ru spins magnetic ordering at temperature around 110 K and superconductivity in Cu-O2 planes below around 40 K. To explore the crossing point phenomena, the specific heat [Cp (T)] was investigated in temperature range 1.9-250 K, under magnetic field of up to 70 kOe. Unfortunately though no magnetic and superconducting transitions are observed in specific heat, a Schottky type anomaly is observed at low temperatures below 20 K. This low temperature Schottky type anomaly can be attributed to splitting of the ground state spectroscopic term 8S7/2 of paramagnetic Gd3+ ions by both internal and external magnetic fields. It was also observed that Cp (T) being measured for different values of magnetic field, possesses the same crossing point (T* = 2.7 K), up to the applied magnetic field 70 kOe. A quantitative explanation of this phenomenon, based on its shape and temperature dependence of the associated generalized heat capacity (Cp), is presented. This effect supports the crossing point phenomena, which is supposed to be inherent for strongly correlated systems.Comment: 12 pages Text+Figs ([email protected]

    On-line planning and scheduling: an application to controlling modular printers

    Get PDF
    We present a case study of artificial intelligence techniques applied to the control of production printing equipment. Like many other real-world applications, this complex domain requires high-speed autonomous decision-making and robust continual operation. To our knowledge, this work represents the first successful industrial application of embedded domain-independent temporal planning. Our system handles execution failures and multi-objective preferences. At its heart is an on-line algorithm that combines techniques from state-space planning and partial-order scheduling. We suggest that this general architecture may prove useful in other applications as more intelligent systems operate in continual, on-line settings. Our system has been used to drive several commercial prototypes and has enabled a new product architecture for our industrial partner. When compared with state-of-the-art off-line planners, our system is hundreds of times faster and often finds better plans. Our experience demonstrates that domain-independent AI planning based on heuristic search can flexibly handle time, resources, replanning, and multiple objectives in a high-speed practical application without requiring hand-coded control knowledge

    Evolving small-world networks with geographical attachment preference

    Full text link
    We introduce a minimal extended evolving model for small-world networks which is controlled by a parameter. In this model the network growth is determined by the attachment of new nodes to already existing nodes that are geographically close. We analyze several topological properties for our model both analytically and by numerical simulations. The resulting network shows some important characteristics of real-life networks such as the small-world effect and a high clustering.Comment: 11 pages, 4 figure

    High Dimensional Apollonian Networks

    Get PDF
    We propose a simple algorithm which produces high dimensional Apollonian networks with both small-world and scale-free characteristics. We derive analytical expressions for the degree distribution, the clustering coefficient and the diameter of the networks, which are determined by their dimension
    corecore