139 research outputs found

    Magnetic Resonance Spectroscopy Detectable Metabolomic Fingerprint of Response to Antineoplastic Treatment

    Get PDF
    Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage. Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging are non-invasive imaging methods that can be employed to monitor metabolism, and previous studies indicate that these methods can be useful for monitoring the metabolic consequences of treatment that are associated with early drug target modulation. However, single-metabolite biomarkers are often not specific to a particular therapy. Here we used an unbiased 1H MRS-based metabolomics approach to investigate the overall metabolic consequences of treatment with the phosphoinositide 3-kinase inhibitor LY294002 and the heat shock protein 90 inhibitor 17AAG in prostate and breast cancer cell lines. LY294002 treatment resulted in decreased intracellular lactate, alanine fumarate, phosphocholine and glutathione. Following 17AAG treatment, decreased intracellular lactate, alanine, fumarate and glutamine were also observed but phosphocholine accumulated in every case. Furthermore, citrate, which is typically observed in normal prostate tissue but not in tumors, increased following 17AAG treatment in prostate cells. This approach is likely to provide further information about the complex interactions between signaling and metabolic pathways. It also highlights the potential of MRS-based metabolomics to identify metabolic signatures that can specifically inform on molecular drug action

    In vivo investigation of hyperpolarized [1,3-13C2]acetoacetate as a metabolic probe in normal brain and in glioma.

    Get PDF
    Dysregulation in NAD+/NADH levels is associated with increased cell division and elevated levels of reactive oxygen species in rapidly proliferating cancer cells. Conversion of the ketone body acetoacetate (AcAc) to β-hydroxybutyrate (β-HB) by the mitochondrial enzyme β-hydroxybutyrate dehydrogenase (BDH) depends upon NADH availability. The β-HB-to-AcAc ratio is therefore expected to reflect mitochondrial redox. Previous studies reported the potential of hyperpolarized 13C-AcAc to monitor mitochondrial redox in cells, perfused organs and in vivo. However, the ability of hyperpolarized 13C-AcAc to cross the blood brain barrier (BBB) and its potential to monitor brain metabolism remained unknown. Our goal was to assess the value of hyperpolarized [1,3-13C2]AcAc in healthy and tumor-bearing mice in vivo. Following hyperpolarized [1,3-13C2]AcAc injection, production of [1,3-13C2]β-HB was detected in normal and tumor-bearing mice. Significantly higher levels of [1-13C]AcAc and lower [1-13C]β-HB-to-[1-13C]AcAc ratios were observed in tumor-bearing mice. These results were consistent with decreased BDH activity in tumors and associated with increased total cellular NAD+/NADH. Our study confirmed that AcAc crosses the BBB and can be used for monitoring metabolism in the brain. It highlights the potential of AcAc for future clinical translation and its potential utility for monitoring metabolic changes associated with glioma, and other neurological disorders

    Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma.

    Get PDF
    Infiltrating low grade gliomas (LGGs) are heterogeneous in their behavior and the strategies used for clinical management are highly variable. A key factor in clinical decision-making is that patients with mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/2) oncogenes are more likely to have a favorable outcome and be sensitive to treatment. Because of their relatively long overall median survival, more aggressive treatments are typically reserved for patients that have undergone malignant progression (MP) to an anaplastic glioma or secondary glioblastoma (GBM). In the current study, ex vivo metabolic profiles of image-guided tissue samples obtained from patients with newly diagnosed and recurrent LGG were investigated using proton high-resolution magic angle spinning spectroscopy (1H HR-MAS). Distinct spectral profiles were observed for lesions with IDH-mutated genotypes, between astrocytoma and oligodendroglioma histologies, as well as for tumors that had undergone MP. Levels of 2-hydroxyglutarate (2HG) were correlated with increased mitotic activity, axonal disruption, vascular neoplasia, and with several brain metabolites including the choline species, glutamate, glutathione, and GABA. The information obtained in this study may be used to develop strategies for in vivo characterization of infiltrative glioma, in order to improve disease stratification and to assist in monitoring response to therapy

    Breast imaging technology: Imaging biochemistry - applications to breast cancer

    Get PDF
    The use of magnetic resonance spectroscopy (MRS) to investigate breast tumour biochemistry in vivo is reviewed. To this end, results obtained both from patients in vivo and from tumour extracts and model systems are discussed. An association has been observed between transformation and an increase in phosphomonoesters (PMEs) detected in the (31)P MRS spectrum, as well as an increase in choline-containing metabolites detected in the (1)H spectrum. A decrease in PME content after treatment is associated with response to treatment as assessed by tumour volume. Experiments in model systems aimed at understanding the underlying biochemical processes are presented, as well as data indicating the usefulness of MRS in monitoring the uptake and metabolism of some chemotherapeutic agents

    Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    Get PDF
    \textit{In vivo} spin spin relaxation time (T2T_2) heterogeneity of hyperpolarized \textsuperscript{13}C urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized \textsuperscript{13}C signal with a macromolecular relaxation agent revealed that a long-T2T_2 component of the \textsuperscript{13}C urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the \textsuperscript{13}C urea to be distinguished via multi-exponential analysis. The T2T_2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized \textsuperscript{13}C urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-\textsuperscript{13}C-cyclopropane-2H8^2\textrm{H}_8. Large T2T_2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis suggesting that T2T_2 relaxometry may be used to monitor the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Two high resolution imaging techniques - multiple echo time averaging and ultra-long echo time sub-2 mm3^3 resolution 3D imaging - were developed to exploit the particularly long relaxation times observed

    17-allyamino-17-demethoxygeldanamycin treatment results in a magnetic resonance spectroscopy-detectable elevation in choline-containing metabolites associated with increased expression of choline transporter SLC44A1 and phospholipase A2

    Get PDF
    Abstract Introduction 17-allyamino-17-demethoxygeldanamycin (17-AAG), a small molecule inhibitor of Hsp90, is currently in clinical trials in breast cancer. However, 17-AAG treatment often results in inhibition of tumor growth rather than shrinkage, making detection of response a challenge. Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are noninvasive imaging methods than can be used to monitor metabolic biomarkers of drug-target modulation. This study set out to examine the MRS-detectable metabolic consequences of Hsp90 inhibition in a breast cancer model. Methods MCF-7 breast cancer cells were investigated, and MRS studies were performed both on live cells and on cell extracts. 31P and 1H MRS were used to determine total cellular metabolite concentrations and 13C MRS was used to probe the metabolism of [1,2-13C]-choline. To explain the MRS metabolic findings, microarray and RT-PCR were used to analyze gene expression, and in vitro activity assays were performed to determine changes in enzymatic activity following 17-AAG treatment. Results Treatment of MCF-7 cells with 17-AAG for 48 hours caused a significant increase in intracellular levels of choline (to 266 ± 18% of control, P = 0.05) and phosphocholine (PC; to 181 ± 10% of control, P = 0.001) associated with an increase in expression of choline transporter SLC44A1 and an elevation in the de novo synthesis of PC. We also detected an increase in intracellular levels of glycerophosphocholine (GPC; to 176 ± 38% of control, P = 0.03) associated with an increase in PLA2 expression and activity. Conclusions This study determined that in the MCF-7 breast cancer model inhibition of Hsp90 by 17-AAG results in a significant MRS-detectable increase in choline, PC and GPC, which is likely due to an increase in choline transport into the cell and phospholipase activation. 1H MRSI can be used in the clinical setting to detect levels of total choline-containing metabolite (t-Cho, composed of intracellular choline, PC and GPC). As Hsp90 inhibitors enter routine clinical use, t-Cho could thus provide an easily detectable, noninvasive metabolic biomarker of Hsp90 inhibition in breast cancer patients

    Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant

    Get PDF
    IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions

    Gene Expression Profile Identifies Tyrosine Kinase c-Met as a Targetable Mediator of Antiangiogenic Therapy Resistance

    Full text link
    PURPOSE: To identify mediators of glioblastoma anti-angiogenic therapy resistance and target these mediators in xenografts. EXPERIMENTAL DESIGN: We performed microarray analysis comparing bevacizumab-resistant glioblastomas (BRGs) to pre-treatment tumors from the same patients. We established novel xenograft models of anti-angiogenic therapy resistance to target candidate resistance mediator(s). RESULTS: BRG microarray analysis revealed upregulation versus pre-treatment of receptor tyrosine kinase c-Met, which underwent further investigation because of its prior biologic plausibility as a bevacizumab resistance mediator. BRGs exhibited increased hypoxia versus pre-treatment in a manner correlating with their c-Met upregulation, increased c-Met phosphorylation, and increased phosphorylation of c-Met-activated focal adhesion kinase (FAK) and STAT3. We developed two novel xenograft models of anti-angiogenic therapy resistance. In the first model, serial bevacizumab treatment of an initially responsive xenograft generated a xenograft with acquired bevacizumab resistance, which exhibited upregulated c-Met expression versus pre-treatment. In the second model, a BRG-derived xenograft maintained refractoriness to the MRI tumor vasculature alterations and survival-promoting effects of bevacizumab. Growth of this BRG-derived xenograft was inhibited by a c-Met inhibitor. Transducing these xenograft cells with c-Met shRNA inhibited their invasion and survival in hypoxia, disrupted their mesenchymal morphology, and converted them from bevacizumab-resistant to bevacizumab-responsive. Engineering bevacizumab-responsive cells to express constitutively active c-Met caused these cells to form bevacizumab-resistant xenografts. CONCLUSION: These findings support the role of c-Met in survival in hypoxia and invasion, features associated with anti-angiogenic therapy resistance; and growth and therapeutic resistance of xenografts resistant to anti-angiogenic therapy. Therapeutically targeting c-Met could prevent or overcome anti-angiogenic therapy resistance
    corecore