33 research outputs found

    TC83 Sequelae

    Get PDF
    Long-term neurological complications, termed sequelae, can result from viral encephalitis, which are not well understood. In human survivors, alphavirus encephalitis can cause severe neurobehavioral changes, in the most extreme cases, a schizophrenic-like syndrome. In the present study, we aimed to adapt an animal model of alphavirus infection survival to study the development of these long-term neurological complications. Upon low-dose infection of wild-type C57B/6 mice, asymptomatic and symptomatic groups were established and compared to mock-infected mice to measure general health and baseline neurological function, including the acoustic startle response and prepulse inhibition paradigm. Prepulse inhibition is a robust operational measure of sensorimotor gating, a fundamental form of information processing. Deficits in prepulse inhibition manifest as the inability to filter out extraneous sensory stimuli. Sensory gating is disrupted in schizophrenia and other mental disorders, as well as neurodegenerative diseases. Symptomatic mice developed deficits in prepulse inhibition that lasted through 6 months post infection; these deficits were absent in asymptomatic or mock-infected groups. Accompanying prepulse inhibition deficits, symptomatic animals exhibited thalamus damage as visualized with H&E staining, as well as increased GFAP expression in the posterior complex of the thalamus and dentate gyrus of the hippocampus. These histological changes and increased GFAP expression were absent in the asymptomatic and mock-infected animals, indicating that glial scarring could have contributed to the prepulse inhibition phenotype observed in the symptomatic animals. This model provides a tool to test mechanisms of and treatments for the neurological sequelae of viral encephalitis and begins to delineate potential explanations for the development of such sequelae post infection

    Longitudinal serum proteomics analyses identify unique and overlapping host response pathways in Lyme disease and West Nile virus infection

    Get PDF
    Advancement in proteomics methods for interrogating biological samples has helped identify disease biomarkers for early diagnostics and unravel underlying molecular mechanisms of disease. Herein, we examined the serum proteomes of 23 study participants presenting with one of two common arthropod-borne infections: Lyme disease (LD), an extracellular bacterial infection or West Nile virus infection (WNV), an intracellular viral infection. The LC/MS based serum proteomes of samples collected at the time of diagnosis and during convalescence were assessed using a depletion-based high-throughput shotgun proteomics (dHSP) pipeline as well as a non-depleting blotting-based low-throughput platform (MStern). The LC/MS integrated analyses identified host proteome responses in the acute and recovery phases shared by LD and WNV infections, as well as differentially abundant proteins that were unique to each infection. Notably, we also detected proteins that distinguished localized from disseminated LD and asymptomatic from symptomatic WNV infection. The proteins detected in both diseases with the dHSP pipeline identified unique and overlapping proteins detected with the non-depleting MStern platform, supporting the utility of both detection methods. Machine learning confirmed the use of the serum proteome to distinguish the infection from healthy control sera but could not develop discriminatory models between LD and WNV at current sample numbers. Our study is the first to compare the serum proteomes in two arthropod-borne infections and highlights the similarities in host responses even though the pathogens and the vectors themselves are different

    Phase I interim results of a phase I/II study of the IgG-Fc fusion COVID-19 subunit vaccine, AKS-452

    Get PDF
    To address the coronavirus disease 2019 (COVID-19) pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recombinant subunit vaccine, AKS-452, is being developed comprising an Fc fusion protein of the SARS-CoV-2 viral spike protein receptor binding domain (SP/RBD) antigen and human IgG1 Fc emulsified in the water-in-oil adjuvant, Montanide™ ISA 720. A single-center, open-label, phase I dose-finding and safety study was conducted with 60 healthy adults (18–65 years) receiving one or two doses 28 days apart of 22.5 µg, 45 µg, or 90 µg of AKS-452 (i.e., six cohorts, N = 10 subjects per cohort). Primary endpoints were safety and reactogenicity and secondary endpoints were immunogenicity assessments. No AEs ≥ 3, no SAEs attributable to AKS-452, and no SARS-CoV-2 viral infections occurred during the study. Seroconversion rates of anti-SARS-CoV-2 SP/RBD IgG titers in the 22.5, 45, and 90 µg cohorts at day 28 were 70%, 90%, and 100%, respectively, which all increased to 100% at day 56 (except 89% for the single-dose 22.5 µg cohort). All IgG titers were Th1-isotype skewed and efficiently bound mutant SP/RBD from several SARS-CoV-2 variants with strong neutralization potencies of live virus infection of cells (including alpha and delta variants). The favorable safety and immunogenicity profiles of this phase I study (ClinicalTrials.gov: NCT04681092) support phase II initiation of this room-temperature stable vaccine that can be rapidly and inexpensively manufactured to serve vaccination at a global scale without the need of a complex distribution or cold chain

    A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease?

    No full text
    After the unexpected arrival of West Nile virus (WNV) in the United States in 1999, the mosquito-borne virus quickly spread throughout North America. Over the past 20 years, WNV has become endemic, with sporadic epizootics. Concerns about the economic impact of infection in horses lead to the licensure of an equine vaccine as early as 2005, but few advances regarding human vaccines or treatments have since been made. There is a high level of virus transmission in hot/humid, subtropical climates, and high morbidity that may disproportionately affect vulnerable populations including the homeless, elderly, and those with underlying health conditions. Although WNV continues to cause significant morbidity and mortality at great cost, funding and research have declined in recent years. These factors, combined with neglect by policy makers and amenability of control measures, indicate that WNV has become a neglected tropical disease

    Cumulative Incidence of West Nile Virus Infection, Continental United States, 1999–2016

    No full text
    Using reported case data from ArboNET and previous seroprevalence data stratified by age and sex, we conservatively estimate that ≈7 million persons in the United States have been infected with West Nile virus since its introduction in 1999. Our data support the need for public health interventions and improved surveillance

    A Preliminary Study of Proinflammatory Cytokines and Depression Following West Nile Virus Infection

    Get PDF
    West Nile virus (WNV) is a neurotropic flavivirus that can cause acute febrile illness leading to neuroinvasive disease. Depression is a well-described outcome following infection, but the underlying pathogenic mechanisms are unknown. Proinflammatory cytokines play important roles in WNV infection, but their role in depression post-WNV remains unstudied. This research aimed to retrospectively evaluate associations between proinflammatory cytokines and new onset depression in a WNV cohort. Participants with asymptomatic WNV infection were significantly less likely to report new onset depression when compared to those with symptomatic disease. Participants with encephalitis and obesity were significantly more likely to report new onset depression post-infection. Based on univariate analysis of 15 antiviral or proinflammatory cytokines, depression was associated with elevated MCP-1 and decreased TNFα, whereas G-CSF was significantly elevated in those with a history of neuroinvasive WNV. However, no cytokines were statistically significant after adjusting for multiple comparisons using the Bonferroni method. While symptomatic WNV infection, encephalitis, and obesity were associated with new onset depression following infection, the role of proinflammatory cytokines requires additional studies. Further research involving paired acute-convalescent samples, larger sample sizes, and additional data points would provide additional insight into the impact of the inflammatory response on WNV-mediated depression

    Unique Cytokine Response in West Nile Virus Patients Who Developed Chronic Kidney Disease: A Prospective Cohort Study

    No full text
    West Nile virus (WNV) is a widespread and devastating disease, especially in those who develop neuroinvasive disease. A growing body of evidence describes sequelae years after infection, including neurological complications and chronic kidney disease (CKD). Eighty-nine out of 373 WNV-positive cases were followed for approximately two years and compared to 127 WNV-negative controls with and without CKD. Adjusted risk ratios (aRRs) were calculated via a log binomial regression to determine the impact of WNV exposure and other possible confounders on the likelihood of developing CKD. Cytokine profiles of WNV patients and controls were evaluated to characterize differences and describe potential underlying pathophysiological mechanisms. The associated risk for developing CKD was significantly associated with history of WNV infection (aRR = 1.91, 95% CI 1.13–3.25). Additionally, five distinct cytokines were found to be significantly associated with WNV infection (eotaxin, IL-8, IL-12p70, IP-10, and TNFα) after the p-value was adjusted to <0.0019 due to the Bonferroni correction. These data support that WNV infection is an independent risk factor for CKD, even after accounting for confounding comorbidities. WNV participants who developed CKD had high activity of proinflammatory markers, indicating underlying inflammatory disease. This study provides new insights into CKD resultant of WNV infection

    Phenotypic and Genotypic Characterization of West Nile Virus Isolate 2004Hou3

    No full text
    West Nile virus (WNV) is an arbovirus with important public health implications globally. This study characterizes a viral isolate, 2004Hou3, in comparison with the NY99 strain from the original WNV outbreak in New York, USA. NextGen sequencing was used to compare the viral isolates genetically, while wild-type C57/BL6 mice were used to compare pathogenicity and viral persistence. Significant differences in survival and clinical presentations were noted, with minor genetic variations between the two strains potentially offering an explanation. One notable difference is that 5 of 35 mice infected with the 2004Hou3 strain developed hind limb flaccid paralysis, suggesting its possible use as a small animal pathogenesis model for this clinical characteristic often observed in human WN neuroinvasive disease patients but not reported in other animal models of infection. Overall, this study suggests that 2004Hou3 is a less pathogenic strain with potential for use in long-term outcome studies using small animal models

    Zoonotic Disease Testing Practices in Pediatric Patients with Meningitis and Encephalitis in a Subtropical Region

    No full text
    Emerging vector-borne and zoonotic pathogens can cause neuroinvasive disease in children; utilization of appropriate diagnostic testing can be low, hindering diagnosis and clinical management of these cases. We must understand factors that influence healthcare providers’ decisions to order diagnostic testing. We reviewed medical charts for pediatric meningitis and encephalitis patients (90 days–18 years) between 2010 and 2017 and analyzed variables associated with testing for known neuroinvasive zoonotic pathogens in the southern United States: West Nile virus (WNV), Bartonella spp., and Rickettsia spp. Among 620 cases of meningitis and encephalitis, ~1/3 (n = 209, 34%) were tested for WNV. Fewer cases were tested for Bartonella (n = 77, 12%) and Rickettsia (n = 47, 8%). Among those tested, 14 (7%) WNV, 7 (9%) Bartonella, and 6 (13%) Rickettsia cases were identified. Factors predicting testing were similar between all agents: clinical presentation of encephalitis, focal neurologic symptoms, new onset seizure, and decreased Glasgow Coma Scale on admission. Cases with a history of arthropod contact were more likely to be tested; however, we did not see an increase in testing during the summer season, when vector exposure typically increases. While our test utilization was higher than that reported in other studies, improvement is needed to identify zoonotic causes of neuroinvasive diseases
    corecore