9 research outputs found

    Improved tools and strategies for the prevention and control of arboviral diseases: A research-to-policy forum

    Get PDF
    Background Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. Method A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. Results The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. Conclusions The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled

    Monitoring Temporal Changes in SARS-CoV-2 Spike Antibody Levels and Variant-Specific Risk for Infection, Dominican Republic, March 2021-August 2022

    Get PDF
    To assess changes in SARS-CoV-2 spike binding antibody prevalence in the Dominican Republic and implications for immunologic protection against variants of concern, we prospectively enrolled 2,300 patients with undifferentiated febrile illnesses in a study during March 2021-August 2022. We tested serum samples for spike antibodies and tested nasopharyngeal samples for acute SARS-CoV-2 infection using a reverse transcription PCR nucleic acid amplification test. Geometric mean spike antibody titers increased from 6.6 (95% CI 5.1-8.7) binding antibody units (BAU)/mL during March-June 2021 to 1,332 (95% CI 1,055-1,682) BAU/mL during May-August 2022. Multivariable binomial odds ratios for acute infection were 0.55 (95% CI 0.40-0.74), 0.38 (95% CI 0.27-0.55), and 0.27 (95% CI 0.18-0.40) for the second, third, and fourth versus the first anti-spike quartile; findings were similar by viral strain. Combining serologic and virologic screening might enable monitoring of discrete population immunologic markers and their implications for emergent variant transmission

    Using Regional Sero-Epidemiology SARS-CoV-2 Anti-S Antibodies in the Dominican Republic to Inform Targeted Public Health Response

    No full text
    Incidence of COVID-19 has been associated with sociodemographic factors. We investigated variations in SARS-CoV-2 seroprevalence at sub-national levels in the Dominican Republic and assessed potential factors influencing variation in regional-level seroprevalence. Data were collected in a three-stage cross-sectional national serosurvey from June to October 2021. Seroprevalence of antibodies against the SARS-CoV-2 spike protein (anti-S) was estimated and adjusted for selection probability, age, and sex. Multilevel logistic regression was used to estimate the effect of covariates on seropositivity for anti-S and correlates of 80% protection (PT80) against symptomatic infection for the ancestral and Delta strains. A total of 6683 participants from 134 clusters in all 10 regions were enrolled. Anti-S, PT80 for the ancestral and Delta strains odds ratio varied across regions, Enriquillo presented significant higher odds for all outcomes compared with Yuma. Compared to being unvaccinated, receiving ≥2 doses of COVID-19 vaccine was associated with a significantly higher odds of anti-S positivity (OR 85.94, [10.95–674.33]) and PT80 for the ancestral (OR 4.78, [2.15–10.62]) and Delta strains (OR 3.08, [1.57–9.65]) nationally and also for each region. Our results can help inform regional-level public health response, such as strategies to increase vaccination coverage in areas with low population immunity against currently circulating strains

    The process: From research to operational implementation.

    No full text
    <p>(1) Retrospective analysis of alarm indicators for dengue outbreaks. (2) Use of algorithms to generate prospective early warning system (EWS). (3) Prospective randomised controlled trial of early warning and response system (EWARS). (4) Associated EWARS publications (5) Scale up of EWARS. <sup>a</sup> Bowman et al.2016; <sup>b</sup> Cluster-randomized controlled trial for dengue early warning systems <i>(in-prep)</i>; <sup>c</sup> Runge-Ranzinger et al. 2016; <sup>d</sup> WHO-TDR. Early Warning and Response System (EWARS) for Dengue Outbreaks: Operational Guide <i>(in-press);</i> <sup>e</sup> WHO-TDR. Technical handbook. 2016.</p

    SARS-CoV-2 seroprevalence, cumulative infections, and immunity to symptomatic infection - A multistage national household survey and modelling study, Dominican Republic, June-October 2021

    Get PDF
    BACKGROUND: Population-level SARS-CoV-2 immunological protection is poorly understood but can guide vaccination and non-pharmaceutical intervention priorities. Our objective was to characterise cumulative infections and immunological protection in the Dominican Republic. METHODS: Household members ≥5 years were enrolled in a three-stage national household cluster serosurvey in the Dominican Republic. We measured pan-immunoglobulin antibodies against the SARS-CoV-2 spike (anti-S) and nucleocapsid glycoproteins, and pseudovirus neutralising activity against the ancestral and B.1.617.2 (Delta) strains. Seroprevalence and cumulative prior infections were weighted and adjusted for assay performance and seroreversion. Binary classification machine learning methods and pseudovirus neutralising correlates of protection were used to estimate 50% and 80% protection against symptomatic infection. FINDINGS: Between 30 Jun and 12 Oct 2021 we enrolled 6683 individuals from 3832 households. We estimate that 85.0% (CI 82.1-88.0) of the ≥5 years population had been immunologically exposed and 77.5% (CI 71.3-83) had been previously infected. Protective immunity sufficient to provide at least 50% protection against symptomatic SARS-CoV-2 infection was estimated in 78.1% (CI 74.3-82) and 66.3% (CI 62.8-70) of the population for the ancestral and Delta strains respectively. Younger (5-14 years, OR 0.47 [CI 0.36-0.61]) and older (≥75-years, 0.40 [CI 0.28-0.56]) age, working outdoors (0.53 [0.39-0.73]), smoking (0.66 [0.52-0.84]), urban setting (1.30 [1.14-1.49]), and three vs no vaccine doses (18.41 [10.69-35.04]) were associated with 50% protection against the ancestral strain. INTERPRETATION: Cumulative infections substantially exceeded prior estimates and overall immunological exposure was high. After controlling for confounders, markedly lower immunological protection was observed to the ancestral and Delta strains across certain subgroups, findings that can guide public health interventions and may be generalisable to other settings and viral strains. FUNDING: This study was funded by the US CDC

    Improved tools and strategies for the prevention and control of arboviral diseases: A research-to-policy forum

    Get PDF
    Background Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. Method A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. Results The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. Conclusions The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled
    corecore