1,457 research outputs found

    A new method for obtaining the star formation law in galaxies

    Get PDF
    We present a new observational method to evaluate the star formation law as formulated by Schmidt: the power-law expression assumed to relate the rate of star formation in a volume of space to the local total gas volume density. Volume densities in the clouds surrounding an OB association are determined with a simple model which considers atomic hydrogen as a photodissociation product on cloud surfaces. The photodissociating flux incident on the cloud is computed from the far-UV luminosity of the OB association and the geometry. We have applied this "PDR Method" to a sample of star-forming regions in M33 using VLA 21-cm data for the HI and GALEX imagery in the far-UV. It provides an estimate of the total volume density of hydrogen (atomic + molecular) in the gas clouds surrounding the young star cluster. A logarithmic graph of the cluster UV luminosity versus the surrounding gas density is a direct measure of the star formation law. However, this plot is severely affected by observational selection, rendering large areas of the diagram inaccessible to the data. An ordinary least-squares regression fit therefore gives a strongly biased result. Its slope primarily reflects the boundary defined when the 21-cm line becomes optically thick, no longer reliably measuring the HI column density. We use a maximum-likelihood statistical approach which can deal with truncated and skewed data, taking into account the large uncertainties in the derived total gas densities. The exponent we obtain for the Schmidt law in M33 is 1.4 \pm 0.2.Comment: Accepted for publication in Ap

    Explanations and the Preponderance Standard: Still Kicking Rocks with Dr. Johnson

    Get PDF
    This paper responds to a previously unpublished article by the late evidence scholar and our friend Craig Callen Craig\u27s article and our response will be published in the Seton Hall Law Review in a symposium issue dedicated to the work of Michael Risinger We thank Michael for unearthing Craig\u27s manuscript ”which discusses our theory of juridical proof in terms of the relative plausibility of competing explanations ”and for inviting us to respond In this response we discuss developments in the literature since the manuscript was written and we explain how our theory accommodates the concerns Craig raises regarding sufficiency of the evidence Our discussion focuses as does Craig\u27s article on motions for summary judgment and judgment as a matter of law using employmentdiscrimination cases as illustrativ

    Wall-liquid and wall-crystal interfacial free energies via thermodynamic integration: A molecular dynamics simulation study

    Full text link
    A method is proposed to compute the interfacial free energy of a Lennard-Jones system in contact with a structured wall by molecular dynamics simulation. Both the bulk liquid and bulk face-centered-cubic crystal phase along the (111) orientation are considered. Our approach is based on a thermodynamic integration scheme where first the bulk Lennard-Jones system is reversibly transformed to a state where it interacts with a structureless flat wall. In a second step, the flat structureless wall is reversibly transformed into an atomistic wall with crystalline structure. The dependence of the interfacial free energy on various parameters such as the wall potential, the density and orientation of the wall is investigated. The conditions are indicated under which a Lennard-Jones crystal partially wets a flat wall.Comment: 15 pages, 11 figure

    The Formation of Molecular Clouds

    Get PDF
    In a recent paper, Elmegreen (2000) has made a cogent case, from an observational point of view, that the lifetimes of molecular clouds are comparable to their dynamical timescales. If so, this has important implications for the mechanisms by which molecular clouds form. In particular we consider the hypothesis that molecular clouds may form not by {\it in situ} cooling of atomic gas, but rather by the agglomeration of the dense phase of the interstellar medium (ISM), much, if not most, of which is already in molecular form.Comment: 6 pages, no figures, accepted on 20 June 2001 for publication in MNRA

    HST/STIS UV Spectroscopy of Two Quiescent X-ray Novae: A0620-00 and Centaurus X-4

    Get PDF
    In 1998 we made UV spectroscopic observations with HST/STIS of A0620-00 and Cen X-4, which are two X-ray novae (aka soft X-ray transients). These binary systems are similar in all respects except that the former contains a black hole and the latter contains a neutron star. A UV spectrum (1700-3100A) is presented for the quiescent state of each system in the context of previously published UV/optical and X-ray data. The non-stellar, continuum spectrum of black hole A0620-00 has a prominent UV/optical peak centered at about 3500A. In contrast the spectrum of neutron-star Cen X-4 lacks a peak and rises steadily with frequency over the entire UV/optical band. In the optical, the two systems are comparably luminous. However, black hole A0620-00 is about 6 times less luminous at 1700A, and about 40 times less luminous in the X-ray band. The broadband spectrum of A0620-00 is discussed in terms of the advection-dominated accretion flow model.Comment: 18 pages including 4 figures; tentatively scheduled for the March 10, 2000 issue of ApJ; minor revision

    Cold Atmospheric Pressure Plasmas for Food Applications

    Get PDF
    Successfully distributing shelf food requires treatment to eliminate microorganisms. Current chemical methods, such as chlorine wash, can alter food quality while only being effective for a limited time. Cold atmospheric pressure plasmas (CAPs) can eradicate the microorganisms responsible for food spoilage and foodborne illness. Optimizing CAP treatments requires understanding the reactive species generated and relating them to eradication efficiency. Recent studies have used optical emission spectroscopy (OES) to determine the species generated in a sealed package that would hold food. In this study,we supplement the OES results with optical absorption spectroscopy (OAS) using the same gases (helium, nitrogen, compressed air, humid air) to elucidate plasma chemistry and temperature. We first reproduce previous results using a new setup while assessing the impact of the package and surrounding box on the plasma spectrum. A UV-Vis light lightsource is emitted through a series of lenses placed next to the plasma. Analysis using SpecAir software allows the identification of absorbed peaks and the calculation of rotational, vibrational, and electron temperatures. Results show that the air plasma produces a primary absorbance peak at a wavelength of ~260 nm, demonstrating the diagnostic capability of this technique . Species generation declined dramatically during the first two minutes of treatment with the effect leveling off thereafter. These findings elucidate reactive species generation within the plasma to optimize CAP systems for microorganism decontamination

    Overview of C/C-SiC Composite Development for the Orion Launch Abort System

    Get PDF
    Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design

    Gravitational Waves from Collapsing Vacuum Domains

    Get PDF
    The breaking of an approximate discrete symmetry, the final stages of a first order phase transition, or a post-inflationary biased probability distribution for scalar fields are possible cosmological scenarios characterized by the presence of unstable domain wall networks. Combining analytical and numerical techniques, we show that the non-spherical collapse of these domains can be a powerful source of gravitational waves. We compute their contribution to the stochastic background of gravitational radiation and explore their observability by present and future gravitational wave detectors.Comment: Revised version to appear in Physical Review Letters. Changes have been made which improve the presentation of the results. Figure 3 was modified, but conclusions remain the sam
    • …
    corecore