198 research outputs found

    A Structured Domain is Responsible for Bundle Selection of Myosin X

    Get PDF
    Primer pla, contrapicat, d'un edifici d'habitatges al carrer Avinyó, 24. Consta de: planta baixa i quatre plantes pis. Els seus balcons, escassament volats, s'allunyen del que és habitual en les edificacions d'aquest tipus, dins el S. XVIII

    Motor and Track Systems for Navigating the Cytoskeleton

    Get PDF

    Exploring Bundle Selectivity of Myosin X Forced Dimer Constructs in vivo

    Get PDF

    Myosin-5 and Myosin-6 Differentially Detect Actin Filament Age

    Get PDF

    A Method for Photoinitating Protein Folding in a Nondenaturing Environment

    Get PDF
    The early kinetic events of protein folding are an important part of the folding pathway, yet our understanding towards the process is limited. Information from the study of these early events can allow us to distinguish between the various models that have been proposed to describe the folding of a protein in real time. Unlike “typical” chemical kinetics with well-defined initial and final states, the initial state of a denatured protein is relatively ill-defined. This uncertainty introduces ambiguity in the interpretation of the experimental data on the early events in protein folding. Toward developing a unified theory of protein folding, it is necessary to begin the observation of the refolding process from a well-defined initial state, trigger folding as rapidly as possible, and to follow the protein in real time as it samples its conformational space over its highly complex free-energy landscape

    Insights from quantitative and mathematical modelling on the proposed 2030 goal for gambiense human African trypanosomiasis (gHAT)

    Get PDF
    Gambiense human African trypanosomiasis (gHAT) is a parasitic, vector-borne neglected tropical disease that has historically affected populations across West and Central Africa and can result in death if untreated. Following from the success of recent intervention programmes against gHAT, the World Health Organization (WHO) has defined a 2030 goal of global elimination of transmission (EOT). The key proposed indicator to measure achievement of the goal is to have zero reported cases. Results of previous mathematical modelling and quantitative analyses are brought together to explore both the implications of the proposed indicator and the feasibility of achieving the WHO goal. Whilst the indicator of zero case reporting is clear and measurable, it is an imperfect proxy for EOT and could arise either before or after EOT is achieved. Lagging reporting of infection and imperfect diagnostic specificity could result in case reporting after EOT, whereas the converse could be true due to underreporting, lack of coverage, and cryptic human and animal reservoirs. At the village-scale, the WHO recommendation of continuing active screening until there are three years of zero cases yields a high probability of local EOT, but extrapolating this result to larger spatial scales is complex. Predictive modelling of gHAT has consistently found that EOT by 2030 is unlikely across key endemic regions if current medical-only strategies are not bolstered by improved coverage, reduced time to detection and/or complementary vector control. Unfortunately, projected costs for strategies expected to meet EOT are high in the short term and strategies that are cost-effective in reducing burden are unlikely to result in EOT by 2030. Future modelling work should aim to provide predictions while taking into account uncertainties in stochastic dynamics and infection reservoirs, as well as assessment of multiple spatial scales, reactive strategies, and measurable proxies of EOT

    Snapshots of a molecular swivel in action

    Get PDF
    Members of the serine family of site-specific recombinases exchange DNA strands via 180° rotation about a central protein-protein interface. Modeling of this process has been hampered by the lack of structures in more than one rotational state for any individual serine recombinase. Here we report crystal structures of the catalytic domains of four constitutively active mutants of the serine recombinase Sin, providing snapshots of rotational states not previously visualized for Sin, including two seen in the same crystal. Normal mode analysis predicted that each tetramer's lowest frequency mode (i.e. most accessible large-scale motion) mimics rotation: two protomers rotate as a pair with respect to the other two. Our analyses also suggest that rotation is not a rigid body movement around a single symmetry axis but instead uses multiple pivot points and entails internal motions within each subunit

    Building a Model of Collaboration Between Historically Black and Historically White Universities

    Get PDF
    Despite increases over the last two decades in the number of degrees awarded to students from underrepresented groups in science, technology, engineering, and mathematics (STEM) disciplines, enhancing diversity in these disciplines remains a challenge. This article describes a strategic approach to this challenge—the development of a collaborative partnership between two universities: the historically Black Elizabeth City State University and the historically White University of New Hampshire. The partnership, a type of learning organization built on three mutually agreed upon principles, strives to enhance opportunities for underrepresented students to pursue careers in the STEM disciplines. This article further describes six promising practices that framed the partnership, which resulted in the submission of nine proposals to federal agencies and the funding of four grants that led to the implementation, research, learning, and evaluation that followed
    corecore