74 research outputs found

    A proposed syntax for Minimotif Semantics, version 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most important developments in bioinformatics over the past few decades has been the observation that short linear peptide sequences (minimotifs) mediate many classes of cellular functions such as protein-protein interactions, molecular trafficking and post-translational modifications. As both the creators and curators of a database which catalogues minimotifs, Minimotif Miner, the authors have a unique perspective on the commonalities of the many functional roles of minimotifs. There is an obvious usefulness in standardizing functional annotations both in allowing for the facile exchange of data between various bioinformatics resources, as well as the internal clustering of sets of related data elements. With these two purposes in mind, the authors provide a proposed syntax for minimotif semantics primarily useful for functional annotation.</p> <p>Results</p> <p>Herein, we present a structured syntax of minimotifs and their functional annotation. A syntax-based model of minimotif function with established minimotif sequence definitions was implemented using a relational database management system (RDBMS). To assess the usefulness of our standardized semantics, a series of database queries and stored procedures were used to classify SH3 domain binding minimotifs into 10 groups spanning 700 unique binding sequences.</p> <p>Conclusion</p> <p>Our derived minimotif syntax is currently being used to normalize minimotif covalent chemistry and functional definitions within the MnM database. Analysis of SH3 binding minimotif data spanning many different studies within our database reveals unique attributes and frequencies which can be used to classify different types of binding minimotifs. Implementation of the syntax in the relational database enables the application of many different analysis protocols of minimotif data and is an important tool that will help to better understand specificity of minimotif-driven molecular interactions with proteins.</p

    PeakMatcher facilitates updated Aedes aegypti embryonic cis-regulatory element map

    Get PDF
    Background: The Aedes aegypti mosquito is a threat to human health across the globe. The A. aegypti genome was recently re-sequenced and re-assembled. Due to a combination of long-read PacBio and Hi-C sequencing, the AaegL5 assembly is chromosome complete and significantly improves the assembly in key areas such as the M/m sex-determining locus. Release of the updated genome assembly has precipitated the need to reprocess historical functional genomic data sets, including cis-regulatory element (CRE) maps that had previously been generated for A. aegypti. Results: We re-processed and re-analyzed the A. aegypti whole embryo FAIRE seq data to create an updated embryonic CRE map for the AaegL5 genome. We validated that the new CRE map recapitulates key features of the original AaegL3 CRE map. Further, we built on the improved assembly in the M/m locus to analyze overlaps of open chromatin regions with genes. To support the validation, we created a new method (PeakMatcher) for matching peaks from the same experimental data set across genome assemblies. Conclusion: Use of PeakMatcher software, which is available publicly under an open-source license, facilitated the release of an updated and validated CRE map, which is available through the NIH GEO. These findings demonstrate that PeakMatcher software will be a useful resource for validation and transferring of previous annotations to updated genome assemblies

    Molecular Signatures of Sexual Communication in the Phlebotomine Sand Flies

    Get PDF
    Phlebotomine sand flies employ an elaborate system of pheromone communication wherein males produce pheromones that attract other males to leks (thus acting as an aggregation pheromone) and females to the lekking males (sex pheromone). In addition, the type of pheromone produced varies among populations. Despite the numerous studies on sand fly chemical communication, little is known of their chemosensory genome. Chemoreceptors interact with chemicals in an organism’s environment to elicit essential behaviors such as the identification of suitable mates and food sources. Thus, they play important roles during adaptation and speciation. Major chemoreceptor gene families, odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) together detect and discriminate the chemical landscape. Here, we annotated the chemoreceptor repertoire in the genomes of Lutzomyia longipalpis and Phlebotomus papatasi, major phlebotomine vectors in the New World and Old World, respectively. Comparison with other sequenced Diptera revealed a large and unique expansion where over 80% of the ~140 ORs belong to a single, taxonomically restricted clade. We next conducted a comprehensive analysis of the chemoreceptors in 63 L. longipalpis individuals from four different locations in Brazil representing allopatric and sympatric populations and three sex-aggregation pheromone types (chemotypes). Population structure based on single nucleotide polymorphisms (SNPs) and gene copy number in the chemoreceptors corresponded with their putative chemotypes, and corroborate previous studies that identified multiple populations. Our work provides genomic insights into the underlying behavioral evolution of sexual communication in the L. longipalpis species complex in Brazil, and highlights the importance of accounting for the ongoing speciation in central and South American Lutzomyia that could have important implications for vectorial capacity

    MimoSA: a system for minimotif annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature.</p> <p>Results</p> <p>We have built the MimoSA application for minimotif annotation. The application supports management of the Minimotif Miner database, literature tracking, and annotation of new minimotifs. MimoSA enables the visualization, organization, selection and editing functions of minimotifs and their attributes in the MnM database. For the literature components, Mimosa provides paper status tracking and scoring of papers for annotation through a freely available machine learning approach, which is based on word correlation. The paper scoring algorithm is also available as a separate program, TextMine. Form-driven annotation of minimotif attributes enables entry of new minimotifs into the MnM database. Several supporting features increase the efficiency of annotation. The layered architecture of MimoSA allows for extensibility by separating the functions of paper scoring, minimotif visualization, and database management. MimoSA is readily adaptable to other annotation efforts that manually curate literature into a MySQL database.</p> <p>Conclusions</p> <p>MimoSA is an extensible application that facilitates minimotif annotation and integrates with the Minimotif Miner database. We have built MimoSA as an application that integrates dynamic abstract scoring with a high performance relational model of minimotif syntax. MimoSA's TextMine, an efficient paper-scoring algorithm, can be used to dynamically rank papers with respect to context.</p

    Detecting inversions with PCA in the presence of population structure.

    No full text
    Chromosomal inversions can lead to reproductive isolation and adaptation in insects such as Drosophila melanogaster and the non-model malaria vector Anopheles gambiae. Inversions can be detected and characterized using principal component analysis (PCA) of single nucleotide polymorphisms (SNPs). To aid in developing such methods, we formed a new benchmark derived from three publicly-available insect data. We then used this benchmark to perform an extended validation of our software for inversion analysis (Asaph). Through that process, we identified and characterized several problematic test cases liable to misinterpretation that can help guide PCA-based inversion detection. Lastly, we re-analyzed the 2R chromosome arm of 150 An. gambiae and coluzzii samples and observed two inversions (2Rc and 2Rd) that were previously known but not annotated in these particular individuals. The resulting benchmark data set and methods will be useful for future inversion detection based solely on SNP data

    A Pipeline Software Architecture for NMR Spectrum Data Translation

    No full text

    Molecular signatures of sexual communication in the phlebotomine sand flies.

    No full text
    Phlebotomine sand flies employ an elaborate system of pheromone communication wherein males produce pheromones that attract other males to leks (thus acting as an aggregation pheromone) and females to the lekking males (sex pheromone). In addition, the type of pheromone produced varies among populations. Despite the numerous studies on sand fly chemical communication, little is known of their chemosensory genome. Chemoreceptors interact with chemicals in an organism's environment to elicit essential behaviors such as the identification of suitable mates and food sources. Thus, they play important roles during adaptation and speciation. Major chemoreceptor gene families, odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) together detect and discriminate the chemical landscape. Here, we annotated the chemoreceptor repertoire in the genomes of Lutzomyia longipalpis and Phlebotomus papatasi, major phlebotomine vectors in the New World and Old World, respectively. Comparison with other sequenced Diptera revealed a large and unique expansion where over 80% of the ~140 ORs belong to a single, taxonomically restricted clade. We next conducted a comprehensive analysis of the chemoreceptors in 63 L. longipalpis individuals from four different locations in Brazil representing allopatric and sympatric populations and three sex-aggregation pheromone types (chemotypes). Population structure based on single nucleotide polymorphisms (SNPs) and gene copy number in the chemoreceptors corresponded with their putative chemotypes, and corroborate previous studies that identified multiple populations. Our work provides genomic insights into the underlying behavioral evolution of sexual communication in the L. longipalpis species complex in Brazil, and highlights the importance of accounting for the ongoing speciation in central and South American Lutzomyia that could have important implications for vectorial capacity
    • …
    corecore