3 research outputs found
On establishing ceramic chemical groups: exploring the influence of data analysis methods and the role of the elements chosen in analysis
Since the 1970s, archaeologists have increasingly depended on archaeometric rather than strictly stylistic data to explore questions of ceramic provenance and technol- ogy, and, by extension, trade, exchange, social networks and even identity. It is accepted as obvious by some archaeometrists and statisti- cians that the results of the analyses of compo- sitional data may be dependent on the format of the data used, on the data exploration method employed and, in the case of multivari- ate analyses, even on the number of elements considered. However, this is rarely articulated clearly in publications, making it less obvious to archaeologists. In this short paper, we re- examine compositional data from a collection of bricks, tiles and ceramics from Hill Hall, near Epping in Essex, England, as a case study to show how the method of data exploration used and the number of elements considered in multivariate analyses of compositional data can affect the sorting of ceramic samples into chemical groups. We compare bivariate data splitting (BDS) with principal component analysis (PCA) and centered log ratio-principal component analysis (CLR-PCA) of different unstandardized data formats [original concen- tration data and logarithmically transformed (i.e. log10 data)], using different numbers of elements. We confirm that PCA, in its various forms, is quite sensitive to the numbers and types of elements used in data analysis
Aluminum extracts in Antarctic paleosols: Proxy data for organic compounds and bacteria and implications for Martian paleosols
International audiencePyrophosphate-extractable Al has been used to establish the presence of organically-complexed compounds in middle latitude and tropical soils and paleosols on Earth. As proxy data used to establish the presence of organic molecules and trace movement within profiles, it has proved an accurate indicator of downward translocation in Spodosols (podzols). Antarctic paleosols, dating from Middle to Early Miocene age (15-20 Ma), are mineralic weathering profiles lacking A and B horizons. These profiles exhibit pavement/Cox/Cz/Cu horizons, largely with sandy silt textures, little clay, and exceedingly low concentrations of organic matter. Recent chemical investigations of 33 soil samples from the New Mountain and Aztec Mountain areas near the Inland Ice, adjacent to the Taylor Glacier, show that pyrophosphate-extractable Al concentrations vary in phase with organic carbon as determined by loss-on-ignition. While Al-extract concentrations in selected samples are low (< 0.15%), increasing values above nil approximately correlate positively with increases in bacterial populations of several common phylum, the extreme high numbers with more advanced biota including fossil Coleoptera. Available data suggest Alp extracts may target samples which may have undergone minor chelation, and which over long periods of time might have a cumulative weathering effect resulting in the accumulation of small concentrations of organic matter