71 research outputs found

    Optimal packing of polydisperse hard-sphere fluids II

    Full text link
    We consider the consequences of keeping the total surface fixed for a polydisperse system of NN hard spheres. In contrast with a similar model (J. Zhang {\it et al.}, J. Chem. Phys. {\bf 110}, 5318 (1999)), the Percus-Yevick and Mansoori equations of state work very well and do not show a breakdown. For high pressures Monte Carlo simulation we show three mechanically stable polydisperse crystals with either a unimodal or bimodal particle-size distributions.Comment: 17 pages, 8 figures, revtex (accepted by J. Chem. Phys.

    Exact analytic expression for a subset of fourth virial coefficients of polydisperse hard sphere mixtures

    Full text link
    We derive an exact, analytic expression for the fourth virial coefficient of a system of polydisperse spheres under the constraint that the smallest sphere has a radius smaller than a given function of the radii of the three remaining particles.Comment: 10 pages RevTex with EPS figure

    Regular binary thermal lattice-gases

    Full text link
    We analyze the power spectrum of a regular binary thermal lattice gas in two dimensions and derive a Landau-Placzek formula, describing the power spectrum in the low-wavelength, low frequency domain, for both the full mixture and a single component in the binary mixture. The theoretical results are compared with simulations performed on this model and show a perfect agreement. The power spectrums are found to be similar in structure as the ones obtained for the continuous theory, in which the central peak is a complicated superposition of entropy and concentration contributions, due to the coupling of the fluctuations in these quantities. Spectra based on the relative difference between both components have in general additional Brillouin peaks as a consequence of the equipartition failure.Comment: 20 pages including 9 figures in RevTex

    Cubatic phase for tetrapods

    Get PDF
    We investigate the phase behavior of tetrapods, hard non-convex bodies formed by 4 rods connected under tetrahedral angles. We predict that, depending on the relative lengths of the rods these particles can form a uniaxial nematic phase, and more surprisingly they can exhibit a cubatic phase, a special case of the biaxial nematic phase. These predictions may be experimentally testable, as experimental realizations of tetrapods have recently become available.Comment: 8 pages ReVTeX 4, including 3 EPS figure

    Do cylinders exhibit a cubatic phase?

    Full text link
    We investigate the possibility that freely rotating cylinders with an aspect ratio L/D=0.9L/D=0.9 exhibit a cubatic phase similar to the one found for a system of cut-spheres. We present theoretical arguments why a cubatic phase might occur in this particular system. Monte Carlo simulations do not confirm the existence of a cubatic phase for cylinders. However, they do reveal an unexpected phase behavior between the isotropic and crystalline phase.Comment: 24 pages, 12 figures, RevTex (Submitted to J. Chem. Phys.

    Reversible gelation and dynamical arrest of dipolar colloids

    Full text link
    We use molecular dynamics simulations of a simple model to show that dispersions of slightly elongated colloidal particles with long-range dipolar interactions, like ferrofluids, can form a physical (reversible) gel at low volume fractions. On cooling, the particles first self-assemble into a transient percolating network of cross-linked chains, which, at much lower temperatures, then undergoes a kinetic transition to a dynamically arrested state with broken ergodicity. This transition from a transient to a frozen gel is characterised by dynamical signatures reminiscent of jamming in much denser dispersions.Comment: 6 pages, 7 figure

    Continuous phase transition in polydisperse hard-sphere mixture

    Full text link
    In a previous paper (J. Zhang {\it et al.}, J. Chem. Phys. {\bf 110}, 5318 (1999)) we introduced a model for polydisperse hard sphere mixtures that is able to adjust its particle-size distribution. Here we give the explanation of the questions that arose in the previous description and present a consistent theory of the phase transition in this system, based on the Percus-Yevick equation of state. The transition is continuous, and like Bose-Einstein condensation a macroscopic aggregate is formed due to the microscopic interactions. A BMCSL-like treatment leads to the same conclusion with slightly more accurate predictions.Comment: 7 pages including 5 figures in revte

    Crystal Nucleation of Colloidal Suspensions under Shear

    Get PDF
    We use Brownian Dynamics simulations in combination with the umbrella sampling technique to study the effect of shear flow on homogeneous crystal nucleation. We find that a homogeneous shear rate leads to a significant suppression of the crystal nucleation rate and to an increase of the size of the critical nucleus. A simple, phenomenological extension of classical nucleation theory accounts for these observations. The orientation of the crystal nucleus is tilted with respect to the shear direction.Comment: 4 pages, 3 figures, Submitted to Phys. Rev. Let
    • …
    corecore