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We investigate the phase behavior of tetrapods, hard nonconvex bodies formed by four rods
connected under tetrahedral angles. We predict that, depending on the relative lengths of the rods
these particles can form a uniaxial nematic phase, and more surprisingly they can exhibit a cubatic
phase, a special case of the biaxial nematic phase. These predictions may be experimentally testable,
as experimental realizations of tetrapods have recently become availabl200®& American
Institute of Physics.[DOI: 10.1063/1.1649733

I. INTRODUCTION equal lengths, but they can also show rodlike and platelike
behavior by forming uniaxial nematic phases if one, respec-
The simplest liquid crystalline phase is the nematic. It istively, two, rods are dominant in determining the shape of the
a spatially homogeneous phase in which the orientations gfarticle. Moreover, at higher densities, these uniaxial nem-
the nonspherical component particles, e.g., rodlike or diskatic phases become unstable and different types of biaxial
like colloids, are distributed in an anisotropic fashion. Morenematic phases are formed.
precisely, they are oriented around a preferred axis yielding a Unfortunately these lower-symmetry liquid-crystalline
phase with macroscopic uniaxial optical anisotropy. How-phases have, thus far, not been observed in experiment. The
ever, this represents only the simplest form of rotationaimain problem seems to be that, unlike the rodlike colloidal
symmetry breaking. When in addition the cylindrical sym- particles that form nematics, crosslike particles that are both
metry around the nematic director is broken, the phase thatgid and sufficiently monodisperse could not be made in a
results is the so-called biaxial nematic phase. As the namsufficient quantities to allow a systematic study of their
biaxial suggests, there are now two preferred axes, which agghase behavior. In particular the cubatic phase has not yet
mutually perpendicular. Biaxial phases can be expected if thbeen observed in experiments, although simulations have
constituent particles themselves do not héeffective cy-  suggested that a phase with this symmetry may exist in a
lindrical symmetry, but are only invariant under a limited system of disklike particle$.
number of discrete rotatiorts. Biaxial phase may also ap- Recently, however, Alivisatogt al. have reported the
pear in mixtures of rodlike and disklike particles. Each of thesynthesis of colloidal CdTe tetrapotfThese particles could
two components individually will form uniaxial nematic be made with a high yield and with well-controlled nanos-
phases at sufficiently high densities. When mixed they willcale dimensions. The experimental tetrapods consists of a
do the same, but their mutual interaction is such that themall crystalline body from which four arms grow under
preferred orientation axis for the rods is perpendicular to thatetrahedral angles. Since these arms are also crystalline, the
of the disks®~® tetrapods are fairly rigid and, with a suitably chosen solvent
This still does not exhaust all possibilities for spatially (and proper steric stabilizatiprshould behave as rigid hard-
homogenous liquid-crystalline phases. Frehkptoposed core particles.
that particles consisting of three identical rods, connected at In this paper we consider the liquid crystalline behavior
right angles at their center, should form a stable high-densitpf tetrapods. For simplicity we work in the Onsager limit of
phase with cubic orientational symmetry. This liquid crystal-large aspect ratios and only take into account a hard-core
line phase is referred to as a cubatic phase. It is a special cag#eraction. We assume that the particles are monodisperse,
of the general biaxial phase, since there are now three mutlput we treat all possible combinations of relative lengths for
ally perpendicular axes of symmetry that are equivalent. the arms of the tetrapod. We focus here on a bifurcation
This model has subsequently been generalized to crosgnalysis, which gives us an upper limit to the stability of the
like particles(“Onsager crosses’, in which the three rods isotropic phase and yields an indication of the nature of the
can have unequal lengtAsThese particles show a surpris- more stable liquid crystalline phases. Using this analysis, we
ingly rich phase behavior. Not only do they form a cubaticargue that the tetrapods of Ref. 10 should, under certain con-
phase in the case that the three rods have approximatefiitions, form cubatic phases.
In Sec. Il we justify the main assumptions of the model
and derive an expression for the Helmholtz free energy. We
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bEjectronic address: mulder@amolf.nl make use of rotation matrix elements, of which the main
®Electronic address: frenkel@amolf.nl properties and conventions are briefly described in the Ap-
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pendix. In Sec. Ill we perform the stability analysis of the as a sum of pair interactions between the “arms” of the
isotropic phase and interpret the results, and conclude with particles, become exact in the limit of infinite aspect ratios.
discussion of the main results in Sec. IV. For large but finite aspect ratios, these assumptions should
constitute excellent approximations.
The truncation of the virial series leads to the following
Il. THE MODEL free-energy functional for homogeneous systems

To analyze the phase behavior of hard tetrapods, we
need expression for the free energy of this system. In gen- ﬁf[(//]:ﬁf—f—f dQy(Q)In y(Q)
eral, this is an intractable problem. However, for tetrapods
with sufficiently slender arms we can make the same as- L
sumptions that were introduced by Onsager in the context of + Epf dQlJ’ dQo(Q1) P(Q2)E(Q1,Q5).
the isotropic—nematic transition of thin hard rdd©nsager
showed that for a fluid of particles with largstrictly speak- @

ing, infinite) length-to-width ratio, the excess free energy CaNyaref is the Helmholtz free energy per particle, which is a

be truncated at the second virial coefficient level. In the Cas@ nctional of ¢ the orientational distribution functiof©ODF)
of hard-core interactions this is equivalent to assuming that iﬁ'his ODF is a measure for the fraction of particles with an

one randomly places particles with a given density in Space,jantation(), which is shorthand for the three Euler angles
the probability that three particles mutually overlap is negI|-(a”8,y) required to specify an arbitrary orientation in a fixed
gibly small. reference frame, and is normalized to unjfy= (kgT) * is

fhe inverse temperaturg the number density anidthe ideal

arms that constitute a tetrapod, it is not immediately obviousgas term that does not explicitly depend on the ODF. The
that the second virial approximation is valid. However, since '

tetrapods are essentially objects with an open structure al sﬂecond term corresponds to the orientational entropy, while
P y obje : P e third term is associated to the translational entropy
consist of four connected rodlike particles, one would expec

that if two particles overlap with each other this is mainly through the kernek((2,,01,) describing the over space in-

. . . . egrated interaction of two tetrapods with orientatidn
due to a single arm of one patrticle that overlaps with a single g P E

f the other particl and ;.
arm ot the other parcle. - . . The interaction of hard-core objects is taken into account
The validity of this plausibility argument is confirmed

solicitely for On rer with thr v lona arm via the excluded volumé&(€4,€,). This volume, is defined
;an tpheC i§o)t/ro(?3ic pr?:sgbg Ir:: a(\) ijiled analssise |C':L|Jsal s)rqo?/vr? tﬁat s the volume around particle(With orientation(l,) that is

. L inaccessible to particle @vith orientation(},). For two slen-
for a length-to-width ratio of about one thousand the prob- b o 2)

. . . der particles, with lengthk; andL, and diameter®, and
ability that, under the constraint that two particles overIap,DZ, respectively, the excluded volume is, to leading order,

more than a single pair of the arms are overlapping, is Iesaiven by

then a percent and decreases for increasing aspect ratios.In

oth_er words, in the |ImIF of I_arge agpe(?t ratios one can de- L,L,(D,+Dy)[sinyl, )
scribe the particle—particle interaction in terms of indepen-

dent pairs of arm—arm interactions only. wherey is the angle between the long axes of the particles.

What Onsager showed for elongated particles inCorrections to this expression are of or@¥IL. Since we are
the isotropic phase is that the asymptotic limit of themainly interested in the limit of large aspect ratios, we re-
third virial coefficientB; can be expressed in terms of the strict ourselves to the leading order only.
second virial coefficient and the aspect ratio by In the case of tetrapods the excluded volume is, of
B;=B20[D/L log(L/D)].** This has been confirmed by the course, more complicated. First of all we now have four
calculation of virial coefficients for long spherocylindéfs. rodlike arms. We will assume that the arms can be approxi-
The fourth and fifth virial showed a similar depender®;e  mated by cylinders with identical diamet&, but possibly
=B YO(D/L). Since the interaction between Onsagerdifferent lengthsL;, wherei=1, 2, 3, 4. With the assump-
crosses in leading order is determined by single rod—rod intion that the arms of tetrapods, while connected, interact in-
teractions the same behavior should be observed for Onsagégpendently, the excluded volume of two tetrapods becomes
crosses, as indeed is found, provided aspect ratios are of tliEesum over the pairwise excluded volumes of the arms
order thousan& In addition, the main contribution to the
higher virial coefficients stems from the so-called ring dia-
grams, which would lead to same scaling behavior for higher
order virial coefficients. Hence corrections to the free energy
due to the simultaneous interaction of three or more particlewhere the superscript refers to the particle and the subscript
is an orderD/L smaller than the second virial contribution to the arm of the tetrapod, henc;ql;2 is the angle between the
and can therefore be neglected in the limit of infinite aspectth and jth arm of particle 1 and 2, respectively. For the
ratios. isotropic phase this leads to a simple expression for the sec-

In summary then, the assumptions that virial expansiorond virial coefficientB,. It is equal to half the excluded
of the free energy can be truncated at the second-virial levalolume averaged over all orientations, as it is simply equal to
and that the interaction between particles can be considerdtle sum of second virials for all pairs of rods

5(91,Qz)=i2j 2LPLPDIsinyY, 3
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™ 2 21+
BZ:ZD(Z Li) : B S o 202 LiL, J dQ Dy (909, H|ZV0Z?)|
We note that we can expand any ODF dependin§dn 2I +1
terms of a linear combination of Wigner rotation matrix ele- 8n2 DE EI Li D

mentsD'm]n(Q). In what follows, we adopt the convention
used by Brink and Satchler in the description of the Wigner
matrices*

In order to make use of the free energy functiofil
we need to rewrite the interacti@8) in terms of these func- Where we made use of the symmetry relati&) and clo-
tions. To this end, we introduce an arbitrary reference oriensure relation(A3) and replaced the cross product by its rep-
tation of a tetrapod. We denote the directions of the armgesentation in Euler anglésinjl.

with lengthL; of the reference tetrapod by the unit-vectors ~ In order for the integral to be nonzero, it is required that
& . For simplicity we assume tha; =7 is the positivez ~ Poth indices of the rotation matrix element are zero. This is a

direction and &, lies in the xz-plane with a positive special case for which the function reduces to a Legendre
x-component. Since by definition the mutual directions arePolynomialD, Q)= P[cos(8)]. By introducing the follow-

2 LiD}.4(9)) )fdﬂp'pfq(nnsinm, 8)

under tetrahedral angles this fixes all directions. ing shorthand notations:
This allows us to interpret the orientatiéhof a particle,
as the one we would obtain if we take the reference particle E|,mEE LiD'mYO(gi), 9
and rotate it over the Euler angles denoted(hyAddition- :
ally we can also interpre as the actual rotation matrix, so 2141 (=
the directions of the arms of a particle becofae, . Finally, W=7 . dBP,(cosp)sir? B, (10

we introduce the rotationg;, such thate;=g;z. Note that

these rotationg; are not uniquely defined, since only two of the expansion coefficients of the excluded volume can be
the Euler angles are required in order to satisfy the restricwritten in a compact form as
tion. However, this has no effect on the final result.

It is obvious that the excluded volun{8) of two tetra- Eim, nz(ZD)f“IEI*mEI n- 1D
pods cannot depend on both orlentatlons independently, btthe integral that remains can be readily evaludsse Ref.
only on the relative orientatiof; *Q,. Hence we can re- 15, Eq.(7.132.2] and is only nonzero for even value bf

write the excluded volume as
2 )2
| L]
=3 2LMLPD|0 80,8 w2 1=0.
i

Finally we introduce another shorthand notation by us-

B m(4l+1)
EQ710)=E(01,9,) Mol = — T D212

(12

ing the kernel3) as a functional acting on an arbitrary func-

=2 2LIPLPDI2 Mg 00,027 () ion w0
With the aid of this form we can now expand the ex- 5[!#](9)_] dQ' Q' ) YY), (13
cIuded volume in terms of rotation matrix elements
m (Q), by introducing the expansion coefficierts y, In particular we allow it to operate on a rotation matrix ele-

ment. Using the expansio{®) and the propertiesAl) and

| (A3) this can be manipulated to yield
EQ)= > E| mnDmn(Q), (6)

" Dl =S B D) (19
m,n I,n,p~m,p .
wherel=0,1,....c, and —l=m,n=<I. Strictly speaking, the P
rotation matrix elements also defined for half-integer “spin” Note that this generates a linear combination of rotation ma-
values. However, for reasons of symmetry these can b#iX elements with the same value foandm. In other words
omitted* each setD}, , with n=—1,...| forms a subset of functions
The expansion coefficients can be evaluated by using théat is mvanant under the functional operator of the excluded

orthogonality relatior{A2) for the rotation matrix elements volume. We can go one step further by evaluating eigenfunc-
tions of the excluded volume. Using the special form of the

o141 coefficients(11), one can easily check that for each combi-
El,m,n:—zf dQDlr:,n(Q)g(Q)' (7)  nation ofl andm at most a single eigenvectgt, exist with
8w a nonzero eigenvalug

Sut_)stltutlng the expressid®) and changing the integration le(Q)ZZ Eip | o(Q), (15)
variables we get
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)\,=(2D),u,% EfoEip- (16)

Note that the eigenvalue is independentmoand in special
cases also might become zero as for instance for odd value
of I.

300

250

200

I:QN
2 150

Ill. BIFURCATION ANALYSIS

The thermodynamically stable phase of our model, is
described by the ODF that minimizes the free enefby
Usually this free energy is not known exactly and one uses &
truncated expansion as an approximate function. There it
however one exception: The isotropic phase. In the limit of
infinite dilution, particles do not interact and therefore each
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orientation has the same prObablllty’ hence the ODF I‘I':th. 1. The density at which the isotropic phase becomes unstable with

merely a cons'tant. . . . _ respect to different modes characterized|tigr a subset of particles with
With the aid of a bifurcation analysis we can determineequal volume and arm lengths,=Ls=L,=(L—L,)/3. The solid line {

an upper limit to the stability of the isotropic phase. To this=2) denotes the isotropic—nematic instability and the dotted lIred)
end, we make an expansion of the ODF around the stabf8dicates the isotropic—cubatic instability.

isotropic solution. Rather than inserting this into the free
energy(1), we use this to find solutions of the stability equa-
tion that is obtained as the functional derivative of the free

! One can show that, for the case of tetrapods, there are
energy with respect to the ODF

only two eigenvalues that can fulfill that requirement,
namely the ones correspondinglte 2 andl =4

1)
siva | A [ g <o )

where\ is a Lagrange multiplier to take care of the proper
normalization of the ODF. Evaluating this expression and
using the definition13) this gives us

3
Ny= — — DL2(4R2—1) 22)
2 6 H

3
IN(gp(2)) +pEL ](Q)=N. (18) A4=——DL2(80R2+1). (23

1296
For both the ODFR/ and number density we take the

formal expansion in a small parameter ) )
For practlcal purposes we used helrec >iL;, and R
Y=thot+ eyt Yt (19 —(2 L2)/L2. Sincex,=\, for R?= 25 and by construction
_ 2 R2< 1, we need to distinguish two types of tetrapods. The
P=potepteipatr 20 ones with R2> 2L for which we need to consider modes
Here we usey,=1/8r” as the ODF for the isotropic phase. related tol=2 and the ones wittR2< 2L for which the
By inserting these expansions in the stability equatib®  modes withl =4 are the important ones. For the special case
and grouping terms for each powerédnwe obtain the bifur-  R?= 2L we would actually need to consider combinations of
cation equations. By solving these we can find the lowespoth, which makes the analysis somewhat more involved,
density pg at which a symmetry breaking mode exists thatput since this is not going to lead to new insights we will not
lead to a lower free energy than that of the isotropic phase. Ifreat it separately.
the case of a nonzero value foy this is sign of a first order As an illustration we show in Fig. 1 the location of the
phase transition at a lower density and hepgés the upper  four lowest instabilities of the isotropic phase for a specific
limit for the meta-stability of the isotropic phase. class of particles, i.e., those for whidh,=Lz=L,=(L
The zeroth-order bifurcation equation merely states that-|_ ;)/3. This set includes the fully symmetric tetrapod
the isotropic solutiony= ¢ is a solution of the stationarity (L,/L=1/4) and a limiting tetrapod with only a single arm
equation. The first order bifurcation has the form of an ei-(L,/L=1). Note that the volume of each particle is the
genvalue problem samev = (7/4)D?L, but the density at which the isotropic

U phase becomes unstable for the symmetric tetrapod is ap-
1,0_ +pofl ¥11=0, (21 proximately thirty times higher than that of a tetrapod with a
single arm. The volume fractio#= pv, however, is propor-

where we have already eliminated the constant contributiongional to D/L, which means that in the limit of large aspect
Since we are interested in a nontrivial solution that leads taatios the transition takes place at small volume fractions.
the lowest possible positive value pf,, we only need to Although we now know the upper limit to the stability of
consider linear combinations of eigenfunctidd$). In par-  the isotropic phase, we do not yet know which are the sym-
ticular we need to find the one that has the largest absolutmetry breaking modes. To find these, we need to perform a
value among all negative eigenvalues. second order bifurcation analysis, i.e., solve the equation
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Bo L[ y)\2 (pz cation equations or by a full numerical minimization of the
e E(—Z) +poll o]+ p1&l )= — J dQ —1, free energy. This falls outside the scope of the present paper.
Yo Yo 24 For other particle configurations the requirement of nonposi-

24 tive values forp, will fix the sign of the coefficientcy,
employing the general solution of the first-order bifurcationwhich can be positive or negative, and hence fully determine

equation given by21) the solution(29), because the magnitude will only depend on
the choice of normalization.
P (Q)=2, Crxn(Q), (25) Similar to the case for Onsager cros8eg can interpret
m this phenomenon in terms of rodlike and disklike behavior.

For each of the four arms of the tetrapod, we can determine
4. Substitution in the second-order bifurcation equat@#), the nema;tic order ?argmeter, which is defined as the average
multiplying with x!* and integrating over the orientatid, va!ue of5c0§(_0)—? with 6 the angle between the nematic
gives Us a set of coupled nonlinear equations in the coeffi@Xis and the direction of the arm. It can be shown that, up to
cientsc,, and constanp, a positive normalization factqr, this is proporthnal to
co(4L;—L)/3 for all arms. Making use of permutations of
w1 1 e 12 arms it follows that for positive values af, the longest arm
P17\|Cnf dQxy Xn:FJ dQxy 1. (26) has the largest nematic order, while for negatiyet would
Yo be the shortest arm. A special limit of the former, is the case
We can also extract the value pf, if we use the complete wherel, is much larger than the other three. It is obvious

where thec,,, are some complex constants dnd either 2 or

function ¢ instead ofX'n* that for such particles this longest arm will dominate the
03 behavior and the tetrapod behaves as a single rodlike par-
o= 1 Jd ‘pl' 27) ticle. The other extreme occurs whén is much smaller
2\ 5 [ dQy? than the other three. In that case the competition among

tis i lize that there i - h those three arms does not allow any of them to dominate and
tis importantto realize that there Is a restrictionon The e 5 g preference for them to be perpendicular to the

reason is that a nonzero valuemfis associated with a first nematic axis and. as in the case of disks. it is the smallest
order phase transition and that in order to follow the solutiondimension that détermines the orientation 'of the particle
towards lower densities we need a nonpositive value, hence The set of equation&6) can also be solved for the ca.se
p1=<0. of R2< 2%, but then we need to plit=4 in Egs.(25—(27).

i 3L with 1=2 i ) : ) ) .
LE;{. us now (_:onsuiehr the Caflﬁz> 112 with | b2 n fhed The bifurcation density can easily be determined from the
preceding equations. The set of equati@® can be solve proper eigenvalué2d)

analytically and yields only a single nontrivial solution,

which is degenerate since all rotations of a solution are also 2592
solutions of the set of equations. For a conveniently chosen PoBz=80R—21- (32)
reference frame the solution is *
Y (Q) = Coxg(). (28)  Butinstead of having a single family of solutions that solve
. . the Eqs(26), we now have two. The first family corresponds
It bifurcates at a reduced density again to a uniaxial nematic phase for which
12 Y1(Q) =coxg(Q), (32
P052:4R2_1- (29

is the particular solution invariant under rotations aboutzhe
Note that in the limit of a single armRP=1) this reduces to axis, andcy<<0 in order forp, to be negative. Contrary to

the correct result for uniaxial rodlike particles. This particu-the previous case, does not change sign.

lar solution is invariant under rotations about thaxis, and A particular solution of the second family of solutions is
hence one can expect that the system shows a phase trargiven by

tion from an isotropic to an uniaxial nematic phase. Inserting _ 4 _— a

the solution in the expressia@7) for p; we obtain P1(2) = Colxo( ) + TalXa( 1)+ x=4(2))}- (33
This solution is only invariant under discrete rotations over

_ -3

plz%uﬁ Ly—Lg—LgJ[Ly—Lo+Ls—L,][L, w2 about thex, y, andz axes. It, therefore, corresponds to
14y5N5 the cubic symmetry group and hence to a cubatic phase. Also
L LatLy]. (30) :cr;rttglos. case, the constraint gn results in a negative value

From this result it follows that if the sum of the lengths of This analysis allows us to sketch a tentative phase dia-
two arms equals the sum of the length of the two remaininggram (see Fig. 2 In this a schematic figure, we indicate the
arms we findp;=0. These special particle configurations nature of the symmetry-breaking modes that lead to the in-
could therefore possibly lead to a continuous phase transitiostability of the isotropic phase. We can characterize the par-
and be the source of a biaxial phase. Whether this scenariicle shape by the normalized valugs-L; /L with the con-
really applies, cannot be determined from this analysis. Onsetraintl,;+1,+13;+1,=1. Each possible particle shape, i.e.,
could resolve this issue either by solving higher order bifur-combination of relative lengths of the arms, corresponds to a
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by light gray in Fig. 3, where the solution has a negative
sign. They are separated by the pldfires) leading to “bi-
axial” particles.

IV. DISCUSSION

The present work suggests that the availability of nano-
crystalline tetrapods with a well controlled size and shpe,
may make it possible to observe cubatic liquid crystalline
phases in experiments. Of course, the present “Onsager-
style” analysis only becomes exact in the limit of very slen-
der, rigid arms. Within this approximation, we have deter-
mined the upper limit to the stability of the isotropic phase
by means of a bifurcation analysis. In addition, we have de-
FIG. 2. Phase diagram of the nature of symmetry breaking modes leading ttBe.r.mmEd the nature of the fluctuations that cause the insta-
the instability of the isotropic phase. Each point inside the tetrahedron cor* '“ty- ) o )
responds to a given shape of the tetrapod. A vertex corresponds to a single Roughly speaking we can distinguish two types of tetra-
arm, the opposite plane to a tetrapod with three arms. For particles inside tr}gods, the ones for which the arms have approximately the

sphere a cubatic phase is expected, outside the sphere a nematic phase W@%ﬂne Iengths and the ones where one or more arms are Sig-
is either rodlike, if it contains a vertex, or plateletlike if it does not. Both

species are separated by planes denoting the particles that might havenzilﬁc.amly longer than the others. qu the first group the iSQ‘
continuous phase transition and show biaxial behavior. tropic phase becomes unstable with respect to a distortion

with either nematic or cubatic symmetry, while for the sec-

L L L ond group only a nematic symmetry comes into play.
point inside a tetrahedron, which is the projection of the =, general the transitions will be first order since we

four-dimensional “shape” space. A vertex of the tetrahedronobtained a nonzero value of the first order shift in density

represents the limit of a tetrapod with only a single arm, thealong the bifurcating solutions, indicating the presence of a

triangular pIang opposite to the vertex contains all pgrticlq/an der Waals loop. An exception might be formed by the
shapt_a; for which that same arm has zero length .wh|Ie th articles located in the planes in Fig. 2. Although the results
remaining three arms.have nonzero Igngths_ In F|g._3, W&f the bifurcation analysis cannot guarantee that the symme-
have made cross sections corresponding to planes with Coﬂ'y of the fluctuations that lead to the instability will also be
stant _value_ fqr one O.f the . . . ) the symmetry of the more stable phase, the experience in a
Nine distinct regions can be identified: A spherical '€ similar study of Onsager crosses has shown that the bifurca-

gion corresponding tR"< 15, where there are two modes tion analysis has a high predictive vaflin addition, it also

tha_t Iea_d to the instapility OT the isqtropic phase, one Ofstrongly indicates that a system of tetrapods with approxi-
which yields the cubatic solution. In Fig. 3 these regions ar

indi d he dark circul Outside th | emately identical arms will have an isotropic to cubatic phase
Indicated as the dark circular areas. Outside these reglong,,nsition which in principle could be verified by a full mini-

we find the particles for which there is only a mode with mization of the Helmholtz free energy functional

uniaxial symmetry 'Fhat makes the isotropic phase unstable. Based on the results of the Onsager crosses, we predict

Tr;.ere'arli'fou:; eﬂuwalent areas close dto ahverte>r<1, ShOIW’? Fat at higher densities a system of tetrapods will undergo

white In Fig. 3, that represent tetrapods where the SOIUton,qjtiong) transitions to phases with yet lower symmetry, ul-

(28) has a positive sign, and four equivalent areas, indicate mately arriving at the phase where only arms with identical
lengths are aligned. In particular three intermediate phases

might appear that are invariant under two-fold, three-fold,
A A and four-fold rotations from the cubic group. In some cases
Y . L 0\ these phases could actually preempt the isotropic-to-nematic

or isotropic-to-cubatic phase transition. This is most likely to
happen for particle shapes close to the planes and/or surface

that separate the different regions in the phase diagram. A
full numerical free-energy minimization would be required
to confirm the existence of these phases and to ascertain

whether a transition from isotropic phase to any of these four

phases is possible.
The formation of a cubatic phase even for fully symmet-
ric tetrapods may seem surprising. Naively, one might expect
/ \0{ \ / \/ \ to observe a “tetrahedratic” liquid crystalline phase. The rea-
son why the latter phase does not appear here is related to the

fact that in the Onsager approximation presented here the

FIG. 3. Cross sections of the phase diagram for constant valle @fom ; ; ; ; ;
left to right, top to bottom for decreasing values. The dark circular areasarmS of a part|cle eﬁeCtIVEIy interact mdependently with

correspond to the cubatic solution, the light and white areas to the two typeglhose of other Partides- Essentially we are therefore insensi-
of nematic solutions, being rod and disklike, respectively. tive to the details on how the arms are connected. Although
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the relative orientation of the arms within each particle istively. The invariant measure of the rotation is given by
fully accounted for, we cannot specify that the arms are cond() = sin(8)dadBdy, with a,y<[0,27] and B<[0,7].
nected end-on. The same results would, therefore, be ob- Symmetry relation
tained for particles in which the four rods were connected at I | 4
their mid-points. Such particles would in fact have cubic ~ Pnm({2)=Dnn(277). (A1)
symmetry and are hence are unable to form a phase with
tetrahedral symmetry.

The results presented here are only valid in the limit of . 2
infinite aspect ratios. For finite aspect ratios we expect two f dQDm',n'(Q)D ()= 21+1 8117 Omm On,n -
types of corrections(i) Contributions due to simultaneous (A2)
overlap of three or more arms aifidl) dependencies on the
detailed construction of the particles. In practice, one would
presumably require aspect ratios of the order one thousand or [
more in order to make these corrections negligiisiee Ref. Dhn(Q2Q1)= 2 Dy o(Q)D} 1(Q1). (A3)
8). Nevertheless one could expect that our qualitative find- p=-l
ings remain valid even for smaller aspect ratios, as is the case
for single rods. The fact that particles might not be perfectly *M. J. Freiser, Phys. Rev. Le24, 1041(1970.
monodisperse is probably not a problem, since there is ig- ml;'edﬁfbpgﬁn?e;h ‘3;953‘?%91?18997-3
rather broad range of particle shapes that gives rise to theA Stroobants and HyN W. Lekkerkerker, J. Phys. Ch@®, 3669
cubatic instability of the isotropic phase. However, finite as- (19g4).
pect ratios imply that also nonhomogeneous phases shoultP. J. Camp, M. P. Allen, P. G. Bolhuis, and D. Frenkel, J. Chem. PIfgs.
be considered, in which the isotropic-to-cubatic transition (9270(1997.
might be preempted by crystallization. Finally, there may be (FO'\S van der Kooij and H. N. W. Lekkerkerker, Phys. Rev. L&#, 781
kinetic limitations to the formation of cubatic phases of tet- 7p. Frenkel, inLiquids, Freezing and the Glass Transitjcedited by J. P.
rapods, as the tetrapods are likely to become entangled atansen, D. Levesque, and J. Zinn-Justitorth-Holland, Amsterdam,

high densities, which could lead to kinetically arrested glass-, 1992 pp- 689-762.
. R. Blaak and B. M. Mulder, Phys. Rev. &8, 5873(1998.
like phases. 9J. A. C. Veerman and D. Frenkel, Phys. Rew4® 5632 (1992.
0L, Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos,
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Here we list the main properties of the rotation matrix 12Rr. Blaak and B. M. Mulder, Mol. Phy€4, 401 (1998.
elements. For a more extended discussion we refer the readléia Frenkel, J. Phys. Cher81, 4912(1987; 92, 5314(1988.
to Ref. 14. 1D, M. Brink and G. R. SatchlerAngular Momentum2nd ed.(Oxford

. . . . University Press, Oxford, 1968
A rotation =(a,B,7) is obtained by successive rota- 15, s Gradshteyn and I. M. Ryzhiable of Integrals, Series, and Prod-

tions of anglesy, B8, andy about thez, y, andz axis, respec- ucts 6th ed.(Academic, San Diego, 2000

Orthogonality relation

Closure relation
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