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We investigate the phase behavior of tetrapods, hard nonconvex bodies formed by four rods
connected under tetrahedral angles. We predict that, depending on the relative lengths of the rods
these particles can form a uniaxial nematic phase, and more surprisingly they can exhibit a cubatic
phase, a special case of the biaxial nematic phase. These predictions may be experimentally testable,
as experimental realizations of tetrapods have recently become available. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1649733#

I. INTRODUCTION

The simplest liquid crystalline phase is the nematic. It is
a spatially homogeneous phase in which the orientations of
the nonspherical component particles, e.g., rodlike or disk-
like colloids, are distributed in an anisotropic fashion. More
precisely, they are oriented around a preferred axis yielding a
phase with macroscopic uniaxial optical anisotropy. How-
ever, this represents only the simplest form of rotational
symmetry breaking. When in addition the cylindrical sym-
metry around the nematic director is broken, the phase that
results is the so-called biaxial nematic phase. As the name
biaxial suggests, there are now two preferred axes, which are
mutually perpendicular. Biaxial phases can be expected if the
constituent particles themselves do not have~effective! cy-
lindrical symmetry, but are only invariant under a limited
number of discrete rotations.1,2 Biaxial phase may also ap-
pear in mixtures of rodlike and disklike particles. Each of the
two components individually will form uniaxial nematic
phases at sufficiently high densities. When mixed they will
do the same, but their mutual interaction is such that the
preferred orientation axis for the rods is perpendicular to that
of the disks.3–6

This still does not exhaust all possibilities for spatially
homogenous liquid-crystalline phases. Frenkel7 proposed
that particles consisting of three identical rods, connected at
right angles at their center, should form a stable high-density
phase with cubic orientational symmetry. This liquid crystal-
line phase is referred to as a cubatic phase. It is a special case
of the general biaxial phase, since there are now three mutu-
ally perpendicular axes of symmetry that are equivalent.

This model has subsequently been generalized to cross-
like particles~‘‘Onsager crosses’’!, in which the three rods
can have unequal lengths.8 These particles show a surpris-
ingly rich phase behavior. Not only do they form a cubatic
phase in the case that the three rods have approximately

equal lengths, but they can also show rodlike and platelike
behavior by forming uniaxial nematic phases if one, respec-
tively, two, rods are dominant in determining the shape of the
particle. Moreover, at higher densities, these uniaxial nem-
atic phases become unstable and different types of biaxial
nematic phases are formed.

Unfortunately these lower-symmetry liquid-crystalline
phases have, thus far, not been observed in experiment. The
main problem seems to be that, unlike the rodlike colloidal
particles that form nematics, crosslike particles that are both
rigid and sufficiently monodisperse could not be made in a
sufficient quantities to allow a systematic study of their
phase behavior. In particular the cubatic phase has not yet
been observed in experiments, although simulations have
suggested that a phase with this symmetry may exist in a
system of disklike particles.9

Recently, however, Alivisatoset al. have reported the
synthesis of colloidal CdTe tetrapods.10 These particles could
be made with a high yield and with well-controlled nanos-
cale dimensions. The experimental tetrapods consists of a
small crystalline body from which four arms grow under
tetrahedral angles. Since these arms are also crystalline, the
tetrapods are fairly rigid and, with a suitably chosen solvent
~and proper steric stabilization!, should behave as rigid hard-
core particles.

In this paper we consider the liquid crystalline behavior
of tetrapods. For simplicity we work in the Onsager limit of
large aspect ratios and only take into account a hard-core
interaction. We assume that the particles are monodisperse,
but we treat all possible combinations of relative lengths for
the arms of the tetrapod. We focus here on a bifurcation
analysis, which gives us an upper limit to the stability of the
isotropic phase and yields an indication of the nature of the
more stable liquid crystalline phases. Using this analysis, we
argue that the tetrapods of Ref. 10 should, under certain con-
ditions, form cubatic phases.

In Sec. II we justify the main assumptions of the model
and derive an expression for the Helmholtz free energy. We
make use of rotation matrix elements, of which the main
properties and conventions are briefly described in the Ap-
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pendix. In Sec. III we perform the stability analysis of the
isotropic phase and interpret the results, and conclude with a
discussion of the main results in Sec. IV.

II. THE MODEL

To analyze the phase behavior of hard tetrapods, we
need expression for the free energy of this system. In gen-
eral, this is an intractable problem. However, for tetrapods
with sufficiently slender arms we can make the same as-
sumptions that were introduced by Onsager in the context of
the isotropic–nematic transition of thin hard rods.11 Onsager
showed that for a fluid of particles with large~strictly speak-
ing, infinite! length-to-width ratio, the excess free energy can
be truncated at the second virial coefficient level. In the case
of hard-core interactions this is equivalent to assuming that if
one randomly places particles with a given density in space,
the probability that three particles mutually overlap is negli-
gibly small.

Although we have assumed large aspect ratios for the
arms that constitute a tetrapod, it is not immediately obvious
that the second virial approximation is valid. However, since
tetrapods are essentially objects with an open structure and
consist of four connected rodlike particles, one would expect
that if two particles overlap with each other this is mainly
due to a single arm of one particle that overlaps with a single
arm of the other particle.

The validity of this plausibility argument is confirmed
explicitely for Onsager crosses with three equally long arms
in the isotropic phase.12 In a detailed analysis it is shown that
for a length-to-width ratio of about one thousand the prob-
ability that, under the constraint that two particles overlap,
more than a single pair of the arms are overlapping, is less
then a percent and decreases for increasing aspect ratios. In
other words, in the limit of large aspect ratios one can de-
scribe the particle–particle interaction in terms of indepen-
dent pairs of arm–arm interactions only.

What Onsager showed for elongated particles in
the isotropic phase is that the asymptotic limit of the
third virial coefficientB3 can be expressed in terms of the
second virial coefficient and the aspect ratio by
B35B2

2O@D/L log(L/D)#.11 This has been confirmed by the
calculation of virial coefficients for long spherocylinders.13

The fourth and fifth virial showed a similar dependenceBn

5B2
(n21)O(D/L). Since the interaction between Onsager

crosses in leading order is determined by single rod–rod in-
teractions the same behavior should be observed for Onsager
crosses, as indeed is found, provided aspect ratios are of the
order thousand.12 In addition, the main contribution to the
higher virial coefficients stems from the so-called ring dia-
grams, which would lead to same scaling behavior for higher
order virial coefficients. Hence corrections to the free energy
due to the simultaneous interaction of three or more particles
is an orderD/L smaller than the second virial contribution
and can therefore be neglected in the limit of infinite aspect
ratios.

In summary then, the assumptions that virial expansion
of the free energy can be truncated at the second-virial level
and that the interaction between particles can be considered

as a sum of pair interactions between the ‘‘arms’’ of the
particles, become exact in the limit of infinite aspect ratios.
For large but finite aspect ratios, these assumptions should
constitute excellent approximations.

The truncation of the virial series leads to the following
free-energy functional for homogeneous systems

b f @c#5b f̂ 1E dVc~V!ln c~V!

1 1
2rE dV1E dV2c~V1!c~V2!E~V1 ,V2!.

~1!

Here f is the Helmholtz free energy per particle, which is a
functional ofc the orientational distribution function~ODF!.
This ODF is a measure for the fraction of particles with an
orientationV, which is shorthand for the three Euler angles
~a,b,g! required to specify an arbitrary orientation in a fixed
reference frame, and is normalized to unity.b5(kBT)21 is
the inverse temperature,r the number density andf̂ the ideal
gas term that does not explicitly depend on the ODF. The
second term corresponds to the orientational entropy, while
the third term is associated to the translational entropy
through the kernelE(V1 ,V2) describing the over space in-
tegrated interaction of two tetrapods with orientationsV1

andV2 .
The interaction of hard-core objects is taken into account

via the excluded volumeE(V1 ,V2). This volume, is defined
as the volume around particle 1~with orientationV1) that is
inaccessible to particle 2~with orientationV2). For two slen-
der particles, with lengthsL1 andL2 and diametersD1 and
D2 , respectively, the excluded volume is, to leading order,
given by

L1L2~D11D2!usingu, ~2!

whereg is the angle between the long axes of the particles.
Corrections to this expression are of orderD/L. Since we are
mainly interested in the limit of large aspect ratios, we re-
strict ourselves to the leading order only.

In the case of tetrapods the excluded volume is, of
course, more complicated. First of all we now have four
rodlike arms. We will assume that the arms can be approxi-
mated by cylinders with identical diameterD, but possibly
different lengthsLi , wherei 51, 2, 3, 4. With the assump-
tion that the arms of tetrapods, while connected, interact in-
dependently, the excluded volume of two tetrapods becomes
a sum over the pairwise excluded volumes of the arms

E~V1 ,V2!5(
i , j

2Li
~1!L j

~2!Dusing i j
12u, ~3!

where the superscript refers to the particle and the subscript
to the arm of the tetrapod, henceg i j

12 is the angle between the
ith and jth arm of particle 1 and 2, respectively. For the
isotropic phase this leads to a simple expression for the sec-
ond virial coefficientB2 . It is equal to half the excluded
volume averaged over all orientations, as it is simply equal to
the sum of second virials for all pairs of rods
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B25
p

4
DS (

i
L i D 2

. ~4!

We note that we can expand any ODF depending onV in
terms of a linear combination of Wigner rotation matrix ele-
mentsDm,n

l (V). In what follows, we adopt the convention
used by Brink and Satchler in the description of the Wigner
matrices.14

In order to make use of the free energy functional~1!,
we need to rewrite the interaction~3! in terms of these func-
tions. To this end, we introduce an arbitrary reference orien-
tation of a tetrapod. We denote the directions of the arms
with length Li of the reference tetrapod by the unit-vectors
êi . For simplicity we assume thatê15 ẑ is the positivez
direction and ê2 lies in the xz-plane with a positive
x-component. Since by definition the mutual directions are
under tetrahedral angles this fixes all directions.

This allows us to interpret the orientationV of a particle,
as the one we would obtain if we take the reference particle
and rotate it over the Euler angles denoted byV. Addition-
ally we can also interpretV as the actual rotation matrix, so
the directions of the arms of a particle becomeVêi . Finally,
we introduce the rotationsgi , such thatêi[gi ẑ. Note that
these rotationsgi are not uniquely defined, since only two of
the Euler angles are required in order to satisfy the restric-
tion. However, this has no effect on the final result.

It is obvious that the excluded volume~3! of two tetra-
pods cannot depend on both orientations independently, but
only on the relative orientationV1

21V2 . Hence we can re-
write the excluded volume as

E~V1
21V2![E~V1 ,V2!

5(
i , j

2Li
~1!L j

~2!DuV1êi
~1!V2êj

~2!u

5(
i , j

2Li
~1!L j

~2!Duẑ~1!gi
21V1

21V2gj ẑ
~2!u. ~5!

With the aid of this form we can now expand the ex-
cluded volume in terms of rotation matrix elements
Dm,n

l (V), by introducing the expansion coefficientsEl ,m,n

E~V![ (
l ,m,n

El ,m,nDm,n
l ~V!, ~6!

where l 50,1,...,̀ , and 2 l<m,n< l . Strictly speaking, the
rotation matrix elements also defined for half-integer ‘‘spin’’
values. However, for reasons of symmetry these can be
omitted.14

The expansion coefficients can be evaluated by using the
orthogonality relation~A2! for the rotation matrix elements

El ,m,n5
2l 11

8p2 E dVDm,n
l* ~V!E~V!. ~7!

Substituting the expression~5! and changing the integration
variables we get

El ,m,n5
2l 11

8p2
2D(

i , j
L iL jE dVDm,n

l* ~giVgj
21!uẑ~1!V ẑ~2!u

5
2l 11

8p2
2D(

p,q
S (

i
L iDm,p

l* ~gi ! D
3S (

j
L jDn,q

l ~gj ! D E dVDp,q
l* ~V!usinbu, ~8!

where we made use of the symmetry relation~A1! and clo-
sure relation~A3! and replaced the cross product by its rep-
resentation in Euler anglesusinbu.

In order for the integral to be nonzero, it is required that
both indices of the rotation matrix element are zero. This is a
special case for which the function reduces to a Legendre
polynomialD0,0

l (V)5Pl@cos(b)#. By introducing the follow-
ing shorthand notations:

El ,m[(
i

L iDm,0
l ~gi !, ~9!

m l[
2l 11

2 E
0

p

dbPl~cosb!sin2 b, ~10!

the expansion coefficients of the excluded volume can be
written in a compact form as

El ,m,n5~2D !m lEl ,m* El ,n . ~11!

The integral that remains can be readily evaluated@see Ref.
15, Eq.~7.132.1!# and is only nonzero for even value ofl

m2l52
p~4l 11!

~ l 11!~2l 21!24l 12 S 2l
l D 2

,

~12!
m2l 1150.

Finally we introduce another shorthand notation by us-
ing the kernel~3! as a functional acting on an arbitrary func-
tion c~V!

E@c#~V![E dV8E~V821V!c~V8!. ~13!

In particular we allow it to operate on a rotation matrix ele-
ment. Using the expansion~6! and the properties~A1! and
~A3! this can be manipulated to yield

E@Dm,n
l #5(

p
El ,n,pDm,p

l ~V!. ~14!

Note that this generates a linear combination of rotation ma-
trix elements with the same value forl andm. In other words
each setDm,n

l with n52 l ,...,l forms a subset of functions
that is invariant under the functional operator of the excluded
volume. We can go one step further by evaluating eigenfunc-
tions of the excluded volume. Using the special form of the
coefficients~11!, one can easily check that for each combi-
nation of l andm at most a single eigenvectorxm

l exist with
a nonzero eigenvaluel l

xm
l ~V!5(

p
El ,pDm,p

l ~V!, ~15!
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l l5~2D !m l(
p

El ,p* El ,p . ~16!

Note that the eigenvalue is independent ofm and in special
cases also might become zero as for instance for odd values
of l.

III. BIFURCATION ANALYSIS

The thermodynamically stable phase of our model, is
described by the ODF that minimizes the free energy~1!.
Usually this free energy is not known exactly and one uses a
truncated expansion as an approximate function. There is
however one exception: The isotropic phase. In the limit of
infinite dilution, particles do not interact and therefore each
orientation has the same probability, hence the ODF is
merely a constant.

With the aid of a bifurcation analysis we can determine
an upper limit to the stability of the isotropic phase. To this
end, we make an expansion of the ODF around the stable
isotropic solution. Rather than inserting this into the free
energy~1!, we use this to find solutions of the stability equa-
tion that is obtained as the functional derivative of the free
energy with respect to the ODF

d

dc~V!
Hb f @c#2lE dVc~V!J 50, ~17!

wherel is a Lagrange multiplier to take care of the proper
normalization of the ODF. Evaluating this expression and
using the definition~13! this gives us

ln~c~V!!1rE@c#~V!5l. ~18!

For both the ODFc and number densityr we take the
formal expansion in a small parametere

c5c01ec11e2c21¯ ~19!

r5r01er11e2r21¯ . ~20!

Here we usec051/8p2 as the ODF for the isotropic phase.
By inserting these expansions in the stability equation~18!
and grouping terms for each power ine, we obtain the bifur-
cation equations. By solving these we can find the lowest
densityr0 at which a symmetry breaking mode exists that
lead to a lower free energy than that of the isotropic phase. In
the case of a nonzero value forr1 this is sign of a first order
phase transition at a lower density and hencer0 is the upper
limit for the meta-stability of the isotropic phase.

The zeroth-order bifurcation equation merely states that
the isotropic solutionc5c0 is a solution of the stationarity
equation. The first order bifurcation has the form of an ei-
genvalue problem

c1

c0
1r0E@c1#50, ~21!

where we have already eliminated the constant contributions.
Since we are interested in a nontrivial solution that leads to
the lowest possible positive value ofr0 , we only need to
consider linear combinations of eigenfunctions~15!. In par-
ticular we need to find the one that has the largest absolute
value among all negative eigenvalues.

One can show that, for the case of tetrapods, there are
only two eigenvalues that can fulfill that requirement,
namely the ones corresponding tol 52 andl 54

l252
p3

6
DL2~4R221!, ~22!

l452
p3

1296
DL2~80R211!. ~23!

For practical purposes we used hereL5( iL i , and R2

5(( iL i
2)/L2. Sincel25l4 for R25 31

112 and by construction
1
4<R2<1, we need to distinguish two types of tetrapods. The
ones with R2. 31

112 for which we need to consider modes
related to l 52 and the ones withR2, 31

112 for which the
modes withl 54 are the important ones. For the special case
R25 31

112 we would actually need to consider combinations of
both, which makes the analysis somewhat more involved,
but since this is not going to lead to new insights we will not
treat it separately.

As an illustration we show in Fig. 1 the location of the
four lowest instabilities of the isotropic phase for a specific
class of particles, i.e., those for whichL25L35L45(L
2L1)/3. This set includes the fully symmetric tetrapod
(L1 /L51/4) and a limiting tetrapod with only a single arm
(L1 /L51). Note that the volume of each particle is the
samev5(p/4)D2L, but the density at which the isotropic
phase becomes unstable for the symmetric tetrapod is ap-
proximately thirty times higher than that of a tetrapod with a
single arm. The volume fractionf5rv, however, is propor-
tional to D/L, which means that in the limit of large aspect
ratios the transition takes place at small volume fractions.

Although we now know the upper limit to the stability of
the isotropic phase, we do not yet know which are the sym-
metry breaking modes. To find these, we need to perform a
second order bifurcation analysis, i.e., solve the equation

FIG. 1. The density at which the isotropic phase becomes unstable with
respect to different modes characterized byl for a subset of particles with
equal volume and arm lengthsL25L35L45(L2L1)/3. The solid line (l
52) denotes the isotropic–nematic instability and the dotted line (l 54)
indicates the isotropic–cubatic instability.
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c2

c0
2

1

2 S c2

c0
D 2

1r0E@c2#1r1E@c1#52E dV
c1

2

2c0
3

,

~24!

employing the general solution of the first-order bifurcation
equation given by~21!

c1~V!5(
m

cmxm
l ~V!, ~25!

where thecm are some complex constants andl is either 2 or
4. Substitution in the second-order bifurcation equation~24!,
multiplying with xn

l* and integrating over the orientationV,
gives us a set of coupled nonlinear equations in the coeffi-
cientscm and constantr1

r1l lcnE dVxn
l* xn

l 5
1

2c0
2 E dVxn

l* c1
2. ~26!

We can also extract the value ofr1 , if we use the complete
function c1* instead ofxn

l*

r15
1

2l lc0
2

* dVc1
3

* dVc1
2

. ~27!

It is important to realize that there is a restriction onr1 . The
reason is that a nonzero value ofr1 is associated with a first
order phase transition and that in order to follow the solution
towards lower densities we need a nonpositive value, hence
r1<0.

Let us now consider the caseR2. 31
112 with l 52 in the

preceding equations. The set of equations~26! can be solved
analytically and yields only a single nontrivial solution,
which is degenerate since all rotations of a solution are also
solutions of the set of equations. For a conveniently chosen
reference frame the solution is

c1~V!5c0x0
2~V!. ~28!

It bifurcates at a reduced density

r0B25
12

4R221
. ~29!

Note that in the limit of a single arm (R251) this reduces to
the correct result for uniaxial rodlike particles. This particu-
lar solution is invariant under rotations about thez axis, and
hence one can expect that the system shows a phase transi-
tion from an isotropic to an uniaxial nematic phase. Inserting
the solution in the expression~27! for r1 we obtain

r15
2p3Dc0

14c0
2l2

2 @L11L22L32L4#@L12L21L32L4#@L1

2L22L31L4#. ~30!

From this result it follows that if the sum of the lengths of
two arms equals the sum of the length of the two remaining
arms we findr150. These special particle configurations
could therefore possibly lead to a continuous phase transition
and be the source of a biaxial phase. Whether this scenario
really applies, cannot be determined from this analysis. One
could resolve this issue either by solving higher order bifur-

cation equations or by a full numerical minimization of the
free energy. This falls outside the scope of the present paper.
For other particle configurations the requirement of nonposi-
tive values forr1 will fix the sign of the coefficientc0 ,
which can be positive or negative, and hence fully determine
the solution~29!, because the magnitude will only depend on
the choice of normalization.

Similar to the case for Onsager crosses,8 we can interpret
this phenomenon in terms of rodlike and disklike behavior.
For each of the four arms of the tetrapod, we can determine
the nematic order parameter, which is defined as the average
value of 3

2 cos2(u)21
2 with u the angle between the nematic

axis and the direction of the arm. It can be shown that, up to
a positive normalization factor, this is proportional to
c0(4Li2L)/3 for all arms. Making use of permutations of
arms it follows that for positive values ofc0 the longest arm
has the largest nematic order, while for negativec0 it would
be the shortest arm. A special limit of the former, is the case
whereL1 is much larger than the other three. It is obvious
that for such particles this longest arm will dominate the
behavior and the tetrapod behaves as a single rodlike par-
ticle. The other extreme occurs whenL1 is much smaller
than the other three. In that case the competition among
those three arms does not allow any of them to dominate and
there is a preference for them to be perpendicular to the
nematic axis and, as in the case of disks, it is the smallest
dimension that determines the orientation of the particle.

The set of equations~26! can also be solved for the case
of R2, 31

112, but then we need to putl 54 in Eqs.~25!–~27!.
The bifurcation density can easily be determined from the
proper eigenvalue~23!

r0B25
2592

80R211
. ~31!

But instead of having a single family of solutions that solve
the Eqs.~26!, we now have two. The first family corresponds
again to a uniaxial nematic phase for which

c1~V!5c0x0
4~V!, ~32!

is the particular solution invariant under rotations about thez
axis, andc0,0 in order forr1 to be negative. Contrary to
the previous casec0 does not change sign.

A particular solution of the second family of solutions is
given by

c1~V!5c0$x0
4~V!1 5

14~x4
4~V!1x24

4 ~V!!%. ~33!

This solution is only invariant under discrete rotations over
p/2 about thex, y, andz axes. It, therefore, corresponds to
the cubic symmetry group and hence to a cubatic phase. Also
in this case, the constraint onr1 results in a negative value
for c0 .

This analysis allows us to sketch a tentative phase dia-
gram~see Fig. 2!. In this a schematic figure, we indicate the
nature of the symmetry-breaking modes that lead to the in-
stability of the isotropic phase. We can characterize the par-
ticle shape by the normalized valuesl i5Li /L with the con-
straint l 11 l 21 l 31 l 451. Each possible particle shape, i.e.,
combination of relative lengths of the arms, corresponds to a
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point inside a tetrahedron, which is the projection of the
four-dimensional ‘‘shape’’ space. A vertex of the tetrahedron
represents the limit of a tetrapod with only a single arm, the
triangular plane opposite to the vertex contains all particle
shapes for which that same arm has zero length while the
remaining three arms have nonzero lengths. In Fig. 3, we
have made cross sections corresponding to planes with con-
stant value for one of thel i .

Nine distinct regions can be identified: A spherical re-
gion corresponding toR2< 31

112, where there are two modes
that lead to the instability of the isotropic phase, one of
which yields the cubatic solution. In Fig. 3 these regions are
indicated as the dark circular areas. Outside these regions,
we find the particles for which there is only a mode with
uniaxial symmetry that makes the isotropic phase unstable.
There are four equivalent areas close to a vertex, shown as
white in Fig. 3, that represent tetrapods where the solution
~28! has a positive sign, and four equivalent areas, indicated

by light gray in Fig. 3, where the solution has a negative
sign. They are separated by the planes~lines! leading to ‘‘bi-
axial’’ particles.

IV. DISCUSSION

The present work suggests that the availability of nano-
crystalline tetrapods with a well controlled size and shape,10

may make it possible to observe cubatic liquid crystalline
phases in experiments. Of course, the present ‘‘Onsager-
style’’ analysis only becomes exact in the limit of very slen-
der, rigid arms. Within this approximation, we have deter-
mined the upper limit to the stability of the isotropic phase
by means of a bifurcation analysis. In addition, we have de-
termined the nature of the fluctuations that cause the insta-
bility.

Roughly speaking we can distinguish two types of tetra-
pods, the ones for which the arms have approximately the
same lengths and the ones where one or more arms are sig-
nificantly longer than the others. For the first group the iso-
tropic phase becomes unstable with respect to a distortion
with either nematic or cubatic symmetry, while for the sec-
ond group only a nematic symmetry comes into play.

In general the transitions will be first order since we
obtained a nonzero value of the first order shift in densityr1

along the bifurcating solutions, indicating the presence of a
van der Waals loop. An exception might be formed by the
particles located in the planes in Fig. 2. Although the results
of the bifurcation analysis cannot guarantee that the symme-
try of the fluctuations that lead to the instability will also be
the symmetry of the more stable phase, the experience in a
similar study of Onsager crosses has shown that the bifurca-
tion analysis has a high predictive value.8 In addition, it also
strongly indicates that a system of tetrapods with approxi-
mately identical arms will have an isotropic to cubatic phase
transition, which in principle could be verified by a full mini-
mization of the Helmholtz free energy functional.

Based on the results of the Onsager crosses, we predict
that at higher densities a system of tetrapods will undergo
additional transitions to phases with yet lower symmetry, ul-
timately arriving at the phase where only arms with identical
lengths are aligned. In particular three intermediate phases
might appear that are invariant under two-fold, three-fold,
and four-fold rotations from the cubic group. In some cases
these phases could actually preempt the isotropic-to-nematic
or isotropic-to-cubatic phase transition. This is most likely to
happen for particle shapes close to the planes and/or surface
that separate the different regions in the phase diagram. A
full numerical free-energy minimization would be required
to confirm the existence of these phases and to ascertain
whether a transition from isotropic phase to any of these four
phases is possible.

The formation of a cubatic phase even for fully symmet-
ric tetrapods may seem surprising. Naively, one might expect
to observe a ‘‘tetrahedratic’’ liquid crystalline phase. The rea-
son why the latter phase does not appear here is related to the
fact that in the Onsager approximation presented here the
arms of a particle effectively interact independently with
those of other particles. Essentially we are therefore insensi-
tive to the details on how the arms are connected. Although

FIG. 2. Phase diagram of the nature of symmetry breaking modes leading to
the instability of the isotropic phase. Each point inside the tetrahedron cor-
responds to a given shape of the tetrapod. A vertex corresponds to a single
arm, the opposite plane to a tetrapod with three arms. For particles inside the
sphere a cubatic phase is expected, outside the sphere a nematic phase which
is either rodlike, if it contains a vertex, or plateletlike if it does not. Both
species are separated by planes denoting the particles that might have a
continuous phase transition and show biaxial behavior.

FIG. 3. Cross sections of the phase diagram for constant value ofl i , from
left to right, top to bottom for decreasing values. The dark circular areas
correspond to the cubatic solution, the light and white areas to the two types
of nematic solutions, being rod and disklike, respectively.
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the relative orientation of the arms within each particle is
fully accounted for, we cannot specify that the arms are con-
nected end-on. The same results would, therefore, be ob-
tained for particles in which the four rods were connected at
their mid-points. Such particles would in fact have cubic
symmetry and are hence are unable to form a phase with
tetrahedral symmetry.

The results presented here are only valid in the limit of
infinite aspect ratios. For finite aspect ratios we expect two
types of corrections:~i! Contributions due to simultaneous
overlap of three or more arms and~ii ! dependencies on the
detailed construction of the particles. In practice, one would
presumably require aspect ratios of the order one thousand or
more in order to make these corrections negligible~see Ref.
8!. Nevertheless one could expect that our qualitative find-
ings remain valid even for smaller aspect ratios, as is the case
for single rods. The fact that particles might not be perfectly
monodisperse is probably not a problem, since there is a
rather broad range of particle shapes that gives rise to the
cubatic instability of the isotropic phase. However, finite as-
pect ratios imply that also nonhomogeneous phases should
be considered, in which the isotropic-to-cubatic transition
might be preempted by crystallization. Finally, there may be
kinetic limitations to the formation of cubatic phases of tet-
rapods, as the tetrapods are likely to become entangled at
high densities, which could lead to kinetically arrested glass-
like phases.

APPENDIX: ROTATION MATRIX ELEMENTS

Here we list the main properties of the rotation matrix
elements. For a more extended discussion we refer the reader
to Ref. 14.

A rotation V5~a,b,g! is obtained by successive rota-
tions of anglesa, b, andg about thez, y, andz axis, respec-

tively. The invariant measure of the rotation is given by
dV5sin(b)dadbdg, with a,gP@0,2p# andbP@0,p#.

Symmetry relation

Dn,m
l* ~V!5Dm,n

l ~V21!. ~A1!

Orthogonality relation

E dVDm8,n8
l 8* ~V!Dm,n

l ~V!5
8p2

2l 11
d l ,l 8dm,m8dn,n8 .

~A2!

Closure relation

Dm,n
l ~V2V1!5 (

p52 l

l

Dm,p
l ~V2!Dp,n

l ~V1!. ~A3!
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