99 research outputs found

    The nature of the prion

    Get PDF
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177Item is not available in this repository.12

    TSE infectivity

    Get PDF

    A gene-targeted mouse model of P102L Gerstmann-Sträussler-Scheinker syndrome

    Get PDF
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177Item not available from this repository.https://doi.org/10.1016/S0272-2712(02)00067-723

    Microarray profiling emphasizes transcriptomic differences between hippocampal in vivo tissue and in vitro cultures" for publication in Brain Communications.

    Get PDF
    From Crossref journal articles via Jisc Publications RouterHistory: epub 2021-07-07, issued 2021-07-07Article version: AMPublication status: PublishedAbstract Primary hippocampal cell cultures are routinely used as an experimentally accessible model platform for the hippocampus and brain tissue in general. Containing multiple cell types including neurons, astrocytes and microglia in a state that can be readily analysed optically, biochemically and electrophysiologically, such cultures have been used in many in vitro studies. To what extent the in vivo environment is recapitulated in primary cultures in an on-going question. Here we compare the transcriptomic profiles of primary hippocampal cell cultures and intact hippocampal tissue. In addition, by comparing profiles from wild type and the PrP 101LL transgenic model of prion disease, we also demonstrate that gene conservation is predominantly conserved across genetically altered lines

    Transmission of murine scrapie to P101L transgenic mice

    Get PDF
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177Item is not available in this repository.The PrP protein is central to the transmissible spongiform encephalopathies (TSEs), and the amino acid sequence of this protein in the host can influence both incubation time of disease and targeting of disease pathology. The N terminus of murine PrP has been proposed to be important in the replication of TSE agents, as mutations or deletions in that region can alter the efficiency of agent replication. To address this hypothesis and to investigate the mechanisms by which host PrP sequence controls the outcome of disease, we have assessed the influence of a single amino acid alteration in the N-terminal region of murine PrP (P101L) on the transmission of TSE agents between mice. Mice homozygous for the mutation (101LL) were inoculated with TSE strains 139A and 79A derived from mice carrying a Prnpa allele, and 79V and 301V derived from mice carrying a Prnpb allele. Incubation times in 101LL mice were extended with all four strains of agent when compared with those in the corresponding mouse genotype from which the infectivity was derived. However, the degree to which the incubation period was increased showed considerable variation between each strain of agent. Moreover, the presence of this single amino acid alteration resulted in a 70 day reduction in incubation time of the 301V strain in Prnpa mice. The effect of the 101L mutation on murine scrapie incubation time appears therefore to be strain specific.https://doi.org/10.1099/vir.0.19147-084pubpub1

    Variable tau accumulation in murine models with abnormal prion protein deposits

    Get PDF
    Rona Barron - ORCID: 0000-0003-4512-9177 https://orcid.org/0000-0003-4512-9177The conversion of cellular prion protein (PrP) into a misfolded isoform is central to the development of prion diseases. However, the heterogeneous phenotypes observed in prion disease may be linked with the presence of other misfolded proteins in the brain. While hyperphosphorylated tau (p.tau) is characteristic of Alzheimer's disease (AD), p.tau is also observed in human prion diseases. To explore this association in the absence of potential effects due to aging, drug treatment, agonal stage and postmortem delay we analyzed p.tau and PrP immunopositivity in mouse models. Analyses were performed on mice inoculated with prion agents, and mice with PrP amyloid in the absence of prion disease. We observed that p.tau was consistently present in animals with prion infectivity (models that transmit disease upon serial passage). In contrast, p.tau was very rarely observed or absent in mice with PrP amyloid plaques in the absence of prion replication. These data indicate that the formation of p.tau is not linked to deposition of misfolded PrP, but suggest that the interaction between replication of infectivity and host factors regulate the formation of p.tau and may contribute to the heterogeneous phenotype of prion diseases.https://doi.org/10.1016/j.jns.2017.10.040383pubpubDecember 201

    The role of host PrP in Transmissible Spongiform Encephalopathies

    Get PDF
    AbstractPrP has a central role in the Transmissible Spongiform Encephalopathies (TSEs), and mutations and polymorphisms in host PrP can profoundly alter the host's susceptibility to a TSE agent. However, precisely how host PrP influences the outcome of disease has not been established. To investigate this we have produced by gene targeting a series of inbred lines of transgenic mice expressing different PrP genes. This allows us to study directly the influence of the host PrP gene in TSEs. We have examined the role of glycosylation, point mutations, polymorphisms and PrP from different species on host susceptibility and the disease process both within the murine species and across species barriers

    Increased susceptibility of transgenic mice expressing human PrP to experimental sheep bovine spongiform encephalopathy is not due to increased agent titre in sheep brain tissue

    Get PDF
    Rona Barron - ORCID: https://orcid.org/0000-0003-4512-9177Bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt–Jakob disease in humans have previously been shown to be caused by the same strain of transmissible spongiform encephalopathy agent. It is hypothesized that the agent spread to humans following consumption of food products prepared from infected cattle. Despite evidence supporting zoonotic transmission, mouse models expressing human prion protein (HuTg) have consistently shown poor transmission rates when inoculated with cattle BSE. Higher rates of transmission have however been observed when these mice are exposed to BSE that has been experimentally transmitted through sheep or goats, indicating that humans may potentially be more susceptible to BSE from small ruminants. Here we demonstrate that increased transmissibility of small ruminant BSE to HuTg mice was not due to replication of higher levels of infectivity in sheep brain tissue, and is instead due to other specific changes in the infectious agent.https://doi.org/10.1099/vir.0.065730-095pubpub

    Increased susceptibility of transgenic mice expressing human PrP to experimental sheep BSE is not due to increased agent titre in sheep brain tissue

    Get PDF
    Bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt–Jakob disease in humans have previously been shown to be caused by the same strain of transmissible spongiform encephalopathy agent. It is hypothesized that the agent spread to humans following consumption of food products prepared from infected cattle. Despite evidence supporting zoonotic transmission, mouse models expressing human prion protein (HuTg) have consistently shown poor transmission rates when inoculated with cattle BSE. Higher rates of transmission have however been observed when these mice are exposed to BSE that has been experimentally transmitted through sheep or goats, indicating that humans may potentially be more susceptible to BSE from small ruminants. Here we demonstrate that increased transmissibility of small ruminant BSE to HuTg mice was not due to replication of higher levels of infectivity in sheep brain tissue, and is instead due to other specific changes in the infectious agent
    • …
    corecore