35 research outputs found
Greenberger-Horne-Zeilinger state protocols for fully connected qubit networks
We generalize the recently proposed Greenberger-Horne-Zeilinger (GHZ)
tripartite protocol [A. Galiautdinov, J. M. Martinis, Phys. Rev. A 78,
010305(R) (2008)] to fully connected networks of weakly coupled qubits
interacting by way of anisotropic Heisenberg exchange g(XX+YY)+g1*ZZ. Our model
adopted here differs from the more familiar Ising-Heisenberg chain in that here
every qubit interacts with every other qubit in the circuit. The assumption of
identical couplings on all qubit pairs allows an elegant proof of the protocol
for arbitrary N. In order to further make contact with experiment, we study
fidelity degradation due to coupling imperfections by numerically simulating
the N=3 and N=4 cases. Our simulations indicate that the best fidelity at
unequal couplings is achieved when (a) the system is initially prepared in the
uniform superposition state (similarly to how it is done in the ideal case),
and (b) the entangling time and the final rotations on each of the qubits are
appropriately adjusted.Comment: 11 pages, 1 figur
The Soreq Applied Research Accelerator Facility (SARAF) - Overview, Research Programs and Future Plans
The Soreq Applied Research Accelerator Facility (SARAF) is under construction
in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the
beginning of the next decade, SARAF will be a user facility for basic and
applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron
superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW
protons, 5 MeV 1 mA CW deuterons) is already in operation, generating
scientific results in several fields of interest. The main ongoing program at
SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian
Averaged Cross Sections (MACS), important for the astrophysical s-process. The
world leading Maxwellian epithermal neutron yield at SARAF-I (
epithermal neutrons/sec), generated by a novel Liquid-Lithium Target (LiLiT),
enables improved precision of known MACSs, and new measurements of
low-abundance and radioactive isotopes. Research plans for SARAF-II span
several disciplines: Precision studies of beyond-Standard-Model effects by
trapping light exotic radioisotopes, such as He, Li and
Ne, in unprecedented amounts (including meaningful studies already
at SARAF-I); extended nuclear astrophysics research with higher energy
neutrons, including generation and studies of exotic neutron-rich isotopes
relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high
energy neutron cross sections for basic nuclear physics and material science
research, including neutron induced radiation damage; neutron based imaging and
therapy; and novel radiopharmaceuticals development and production. In this
paper we present a technical overview of SARAF-I and II, including a
description of the accelerator and its irradiation targets; a survey of
existing research programs at SARAF-I; and the research potential at the
completed facility (SARAF-II).Comment: 32 pages, 31 figures, 10 tables, submitted as an invited review to
European Physics Journal