35 research outputs found

    Seven day pre-analytical stability of serum and plasma neurofilament light chain.

    Get PDF
    Neurofilament light chain (NfL) has emerged as a biomarker of neuroaxonal damage in several neurologic conditions. With increasing availability of fourth-generation immunoassays detecting NfL in blood, aspects of pre-analytical stability of this biomarker remain unanswered. This study investigated NfL concentrations in serum and plasma samples of 32 patients with neurological diagnoses using state of the art Simoa technology. We tested the effect of delayed freezing of up to 7 days and statistically determined stability and validity of measured concentrations. We found concentrations of NfL in serum and plasma to remain stable at room temperature when processing of samples is delayed up to 7 days (serum: mean absolute difference 0.9 pg/mL, intraindividual variation 1.2%; plasma: mean absolute difference 0.5 pg/mL, intraindividual variation 1.3%). Consistency of these results was nearly perfect for serum and excellent for plasma (intraclass correlation coefficients 0.99 and 0.94, respectively). In conclusion, the soluble serum and plasma NfL concentration remains stable when unprocessed blood samples are stored up to 7 days at room temperature. This information is essential for ensuring reliable study protocols, for example, when shipment of fresh samples is needed

    Increased serum neurofilament light chain concentration indicates poor outcome in Guillain-Barré syndrome

    Get PDF
    BACKGROUND Guillain-Barré syndrome (GBS) is an autoimmune disease that results in demyelination and axonal damage. Five percent of patients die and 20% remain significantly disabled on recovery. Recovery is slow in most cases and eventual disability is difficult to predict, especially early in the disease. Blood or cerebrospinal fluid (CSF) biomarkers that could help identify patients at risk of poor outcome are required. We measured serum neurofilament light chain (sNfL) concentrations from blood taken upon admission and investigated a correlation between sNfL and clinical outcome. METHODS Baseline sNfL levels in 27 GBS patients were compared with a control group of 22 patients with diagnoses not suggestive of any axonal damage. Clinical outcome parameters for GBS patients included (i) the Hughes Functional Score (HFS) at admission, nadir, and discharge; (ii) the number of days hospitalised; and (iii) whether intensive care was necessary. RESULTS The median sNfL concentration in our GBS sample on admission was 85.5 pg/ml versus 9.1 pg/ml in controls. A twofold increase in sNfL concentration at baseline was associated with an HFS increase of 0.6 at nadir and reduced the likelihood of discharge with favourable outcome by a factor of almost three. Higher sNfL levels upon admission correlated well with hospitalisation time (rs = 0.69, p < 0.0001), during which transfer to intensive care occurred more frequently at an odds ratio of 2.4. Patients with baseline sNfL levels below 85.5 pg/ml had a 93% chance of being discharged with an unimpaired walking ability. CONCLUSIONS sNfL levels measured at hospital admission correlated with clinical outcome in GBS patients. These results represent amounts of acute axonal damage and reflect mechanisms resulting in disability in GBS. Thus, sNfL may serve as a convenient blood-borne biomarker to personalise patient care by identifying those at higher risk of poor outcome

    The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy - A prospective, pilot observational study

    Get PDF
    Sepsis-associated encephalopathy (SAE) contributes to mortality and neurocognitive impairment of sepsis patients. Neurofilament (Nf) light (NfL) and heavy (NfH) chain levels as biomarkers for neuroaxonal injury were not evaluated in cerebrospinal fluid (CSF) and plasma of patients with sepsis-associated encephalopathy (SAE) before. We conducted a prospective, pilot observational study including 20 patients with septic shock and five patients without sepsis serving as controls. The assessment of SAE comprised a neuropsychiatric examination, electroencephalography (EEG), magnetic resonance imaging (MRI) and delirium screening methods including the confusion assessment method for the ICU (CAM-ICU) and the intensive care delirium screening checklist (ICDSC). CSF Nf measurements in sepsis patients and longitudinal plasma Nf measurements in all participants were performed on days 1, 3 and 7 after study inclusion. Plasma NfL levels increased in sepsis patients over time (p = 0.0063) and remained stable in patients without sepsis. Plasma NfL values were significantly higher in patients with SAE (p = 0.011), significantly correlated with the severity of SAE represented by ICDSC values (R = 0.534, p = 0.022) and correlated with a poorer functional outcome after 100 days (R = -0.535, p = 0.0003). High levels of CSF Nf were measured in SAE patients. CSF NfL levels were higher in non-survivors (p = 0.012) compared with survivors and correlated with days until death (R = -0.932, p<0.0001) and functional outcome after 100 days (R = -0.749, p<0.0001). The present study showed for the first time that Nf levels provide complementary prognostic information in SAE patients indicating a higher chance of death and poorer functional/cognitive outcome in survivors
    corecore