10 research outputs found
Propofol-Induced Changes in Neurotrophic Signaling in the Developing Nervous System In Vivo
Several studies have revealed a role for neurotrophins in anesthesia-induced neurotoxicity in the developing brain. In this study we monitored the spatial and temporal expression of neurotrophic signaling molecules in the brain of 14-day-old (PND14) Wistar rats after the application of a single propofol dose (25 mg/kg i.p). The structures of interest were the cortex and thalamus as the primary areas of anesthetic actions. Changes of the protein levels of the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), their activated receptors tropomyosin-related kinase (TrkA and TrkB) and downstream kinases Akt and the extracellular signal regulated kinase (ERK) were assessed by Western immunoblot analysis at different time points during the first 24 h after the treatment, as well as the expression of cleaved caspase-3 fragment. Fluoro-Jade B staining was used to follow the appearance of degenerating neurons. The obtained results show that the treatment caused marked alterations in levels of the examined neurotrophins, their receptors and downstream effector kinases. However, these changes were not associated with increased neurodegeneration in either the cortex or the thalamus. These results indicate that in the brain of PND14 rats, the interaction between Akt/ERK signaling might be one of important part of endogenous defense mechanisms, which the developing brain utilizes to protect itself from potential anesthesia-induced damage. Elucidation of the underlying molecular mechanisms will improve our understanding of the age-dependent component of anesthesia-induced neurotoxicity
Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations
CONTEXT: A stellar occultation by Neptune’s main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. AIMS: We aimed at constraining Triton’s atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. METHODS: We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range ~8 km to ~190 km, corresponding to pressure levels from 9 µbar down to a few nanobars. RESULTS: A pressure of 1.18 ± 0.03 µbar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 µbar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude
Constraints on the structure and seasonal variations of Triton’s atmosphere from the 5 October 2017 stellar occultation and previous observations⋆
Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range ∼8 km to ∼190 km, corresponding to pressure levels from 9 μbar down to a few nanobars. Results. (i) A pressure of 1.18 ± 0.03 μbar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 μbar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude