13 research outputs found
Analysis of immunization time, amplitude, and adverse events of seven different vaccines against SARS-CoV-2 across four different countries
Background: Scarce information exists in relation to the comparison of seroconversion and adverse events following immunization (AEFI) with different SARS-CoV-2 vaccines. Our aim was to correlate the magnitude of the antibody response to vaccination with previous clinical conditions and AEFI. Methods: A multicentric comparative study where SARS-CoV-2 spike 1-2 IgG antibodies IgG titers were measured at baseline, 21-28 days after the first and second dose (when applicable) of the following vaccines: BNT162b2 mRNA, mRNA-1273, Gam-COVID-Vac, Coronavac, ChAdOx1-S, Ad5-nCoV and Ad26.COV2. Mixed model and Poisson generalized linear models were performed. Results: We recruited 1867 individuals [52 (SD 16.8) years old, 52% men]. All vaccines enhanced anti-S1 and anti-S2 IgG antibodies over time (p<0.01). The highest increase after the first and second dose was observed in mRNA-1273 (p<0.001). There was an effect of previous SARS-CoV-2 infection; and an interaction of age with previous SARS-CoV-2 infection, Gam-COVID-Vac and ChAdOx1-S (p<0.01). There was a negative correlation of Severe or Systemic AEFI (AEs) of naĂŻve SARS-CoV-2 subjects with age and sex (p<0.001); a positive interaction between the delta of antibodies with Gam-COVID-Vac (p=0.002). Coronavac, Gam-COVID-Vac and ChAdOx1-S had less AEs compared to BNT162b (p<0.01). mRNA-1273 had the highest number of AEFIs. The delta of the antibodies showed an association with AEFIs in previously infected individuals (p<0.001). Conclusions: The magnitude of seroconversion is predicted by age, vaccine type and SARS-CoV-2 exposure. AEs are correlated with age, sex, and vaccine type. The delta of the antibody response only correlates with AEs in patients previously exposed to SARS-CoV-2. Registration number: ClinicalTrials.gov, identifier NCT05228912
Importance of Vaccination against SARS-CoV-2 in Patients with Interstitial Lung Disease Associated with Systemic Autoimmune Disease.
Objectives: To describe the frequency of COVID-19 and the effect of vaccination in patients with interstitial lung disease and systemic autoimmune disease (ILD-SAD) and to identify factors associated with infection and severity of COVID-19. Methods: We performed a cross-sectional multicenter study of patients with ILD-SAD followed between June and October 2021. The main variable was COVID-19 infection confirmed by a positive polymerase chain reaction (PCR) result for SARS-CoV-2. The secondary variables included severity of COVID-19, if the patient had to be admitted to hospital or died of the disease, and vaccination status. Other variables included clinical and treatment characteristics, pulmonary function and high-resolution computed tomography. Two logistic regression was performed to explore factors associated with âCOVID-19â and âsevere COVID-19â. Results: We included 176 patients with ILD-SAD: 105 (59.7%) had rheumatoid arthritis, 49 (27.8%) systemic sclerosis, and 22 (12.54%) inflammatory myopathies. We recorded 22/179 (12.5%) SARS-CoV-2 infections, 7/22 (31.8%) of them were severe and 3/22 (13.22%) died. As to the vaccination, 163/176 (92.6%) patients received the complete doses. The factors associated with SARS-CoV-2 infection were FVC (OR (95% CI), 0.971 (0.946â0.989); p = 0.040), vaccination (OR (95% CI), 0.169 (0.030â0.570); p = 0.004), and rituximab (OR (95% CI), 3.490 (1.129â6.100); p = 0.029). The factors associated with severe COVID-19 were the protective effect of the vaccine (OR (95% CI), 0.024 (0.004â0.170);