26,439 research outputs found

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Cosmological Constant and Noncommutativity: A Newtonian point of view

    Full text link
    We study a Newtonian cosmological model in the context of a noncommutative space. It is shown that the trajectories of a test particle undergo modifications such that it no longer satisfies the cosmological principle. For the case of a positive cosmological constant, spiral trajectories are obtained and corrections to the Hubble constant appear. It is also shown that, in the limit of a strong noncommutative parameter, the model is closely related to a particle in a G\"odel-type metric.Comment: 14 pages, 3 figures, Introduction was changed and references added. Final version accepted for publication in JMPL

    The Kepler problem and non commutativity

    Full text link
    We investigate the Kepler problem using a symplectic structure consistent with the commutation rules of the noncommutative quantum mechanics. We show that a noncommutative parameter of the order of 1058m210^{-58} \text m^2 gives observable corrections to the movement of the solar system. In this way, modifications in the physics of smaller scales implies modifications at large scales, something similar to the UV/IR mixing.Comment: 10 page

    1-D Harmonic Oscillator in Snyder Space, the Classic and the Quantum

    Full text link
    The 1-D dimension harmonic oscillator in Snyder space is investigated in its classical and quantum versions. The classical trajectory is obtained and the semiclassical quantization from the phase space trajectories is discussed. In the meanwhile, an effective cutoff to high frequencies is found. The quantum version is developed and an equivalent usual harmonic oscillator is obtained through an effective mass and an effective frequency introduced in the model. This modified parameters give us an also modified energy spectra.Comment: 8 pages, 2 figure

    Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    Get PDF
    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or E×B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge

    Online Popularity and Topical Interests through the Lens of Instagram

    Full text link
    Online socio-technical systems can be studied as proxy of the real world to investigate human behavior and social interactions at scale. Here we focus on Instagram, a media-sharing online platform whose popularity has been rising up to gathering hundred millions users. Instagram exhibits a mixture of features including social structure, social tagging and media sharing. The network of social interactions among users models various dynamics including follower/followee relations and users' communication by means of posts/comments. Users can upload and tag media such as photos and pictures, and they can "like" and comment each piece of information on the platform. In this work we investigate three major aspects on our Instagram dataset: (i) the structural characteristics of its network of heterogeneous interactions, to unveil the emergence of self organization and topically-induced community structure; (ii) the dynamics of content production and consumption, to understand how global trends and popular users emerge; (iii) the behavior of users labeling media with tags, to determine how they devote their attention and to explore the variety of their topical interests. Our analysis provides clues to understand human behavior dynamics on socio-technical systems, specifically users and content popularity, the mechanisms of users' interactions in online environments and how collective trends emerge from individuals' topical interests.Comment: 11 pages, 11 figures, Proceedings of ACM Hypertext 201

    Effect of parallel magnetic field on the Zero Differential Resistance State

    Full text link
    The non-linear zero-differential resistance state (ZDRS) that occurs for highly mobile two-dimensional electron systems in response to a dc bias in the presence of a strong magnetic field applied perpendicular to the electron plane is suppressed and disappears gradually as the magnetic field is tilted away from the perpendicular at fixed filling factor ν\nu. Good agreement is found with a model that considers the effect of the Zeeman splitting of Landau levels enhanced by the in-plane component of the magnetic field.Comment: 4 pages, 4 figure

    Single-photon optomechanics in the strong coupling regime

    Full text link
    We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.Comment: 14 pages, 6 figure

    3D wedge filling and 2D random-bond wetting

    Get PDF
    Fluids adsorbed in 3D wedges are shown to exhibit two types of continuous interfacial unbinding corresponding to critical and tricritical filling respectively. Analytic solution of an effective interfacial model based on the transfer-matrix formalism allows us to obtain the asymptotic probability distribution functions for the interfacial height when criticality and tricriticality are approached. Generalised random walk arguments show that, for systems with short-ranged forces, the critical singularities at these transitions are related to 2D complete and critical wetting with random bond disorder respectively.Comment: 7 pages, 3 figures, accepted for publication in Europhysics Letter
    corecore