2 research outputs found

    Pain reported during prolonged standing is associated with reduced anticipatory postural adjustments of the deep abdominals

    No full text
    Within the context of low back pain, the measurement of deep abdominal anticipatory postural adjustments (APAs) during rapid limb movement has received much interest. There is dispute about the association between APAs and back pain. Moreover, there is limited evidence examining compensatory postural adjustments (CPAs) in back pain. This study examined the relationship between APAs and CPAs with pain reported in the low back during 2 h of prolonged standing. Twenty-six participants with no history of severe back pain performed 2-h prolonged standing. APAs and CPAs of the deep abdominal muscles (transverse abdominis/internal obliques) were measured by surface electromyography during rapid shoulder flexion and extension. APAs and CPAs measured prestanding revealed symmetrical anticipatory activity, but an asymmetry between the different sides of the abdominal wall for CPAs. APAs and CPAs measured pre-standing were not associated with pain reported during standing. For the whole group, APA amplitudes were reduced post-standing during shoulder flexion (p = 0.005). Pain reported during standing was associated with the changes in APA amplitudes post-standing (rs = 0.43, p = 0.002). These findings support previous research using hypertonic saline injections to induce back pain that showed reduced APA amplitudes, and extends findings to suggest pain does not effect compensatory postural adjustments

    The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling

    No full text
    The purpose of this investigation was to assess the influence of sodium bicarbonate supplementation on maximal force production, rate of force development (RFD), and muscle recruitment during repeated bouts of high-intensity cycling. Ten male and female (n = 10) subjects completed two fixed-cadence, high-intensity cycling trials. Each trial consisted of a series of 30-s efforts at 120% peak power output (maximum graded test) that were interspersed with 30-s recovery periods until task failure. Prior to each trial, subjects consumed 0.3 g/kg sodium bicarbonate (ALK) or placebo (PLA). Maximal voluntary contractions were performed immediately after each 30-s effort. Maximal force (Fmax) was calculated as the greatest force recorded over a 25-ms period throughout the entire contraction duration while maximal RFD (RFDmax) was calculated as the greatest 10-ms average slope throughout that same contraction. Fmax declined similarly in both the ALK and PLA conditions, with baseline values (ALK: 1,226 ± 393 N; PLA: 1,222 ± 369 N) declining nearly 295 ± 54 N [95% confidence interval (CI) = 84–508 N; P < 0.006]. RFDmax also declined in both trials; however, a differential effect persisted between the ALK and PLA conditions. A main effect of condition was observed across the performance time period, with RFDmax on average higher during ALK (ALK: 8,729 ± 1,169 N/s; PLA: 7,691 ± 1,526 N/s; mean difference between conditions 1,038 ± 451 N/s, 95% CI = 17–2,059 N/s; P < 0.048). These results demonstrate a differential effect of alkalosis on maximum force vs. maximum rate of force development during a whole body fatiguing task
    corecore