9,574 research outputs found
Critical Casimir effect in films for generic non-symmetry-breaking boundary conditions
Systems described by an O(n) symmetrical Hamiltonian are considered
in a -dimensional film geometry at their bulk critical points. A detailed
renormalization-group (RG) study of the critical Casimir forces induced between
the film's boundary planes by thermal fluctuations is presented for the case
where the O(n) symmetry remains unbroken by the surfaces. The boundary planes
are assumed to cause short-ranged disturbances of the interactions that can be
modelled by standard surface contributions corresponding
to subcritical or critical enhancement of the surface interactions. This
translates into mesoscopic boundary conditions of the generic
symmetry-preserving Robin type .
RG-improved perturbation theory and Abel-Plana techniques are used to compute
the -dependent part of the reduced excess free energy per
film area to two-loop order. When , it takes the scaling
form as
, where are scaling fields associated with the
surface-enhancement variables , while is a standard
surface crossover exponent. The scaling function
and its analogue for the Casimir force
are determined via expansion in and extrapolated to
dimensions. In the special case , the expansion
becomes fractional. Consistency with the known fractional expansions of D(0,0)
and to order is achieved by appropriate
reorganisation of RG-improved perturbation theory. For appropriate choices of
and , the Casimir forces can have either sign. Furthermore,
crossovers from attraction to repulsion and vice versa may occur as
increases.Comment: Latex source file, 40 pages, 9 figure
Vacuum Boundary Effects
The effect of boundary conditions on the vacuum structure of quantum field
theories is analysed from a quantum information viewpoint. In particular, we
analyse the role of boundary conditions on boundary entropy and entanglement
entropy. The analysis of boundary effects on massless free field theories
points out the relevance of boundary conditions as a new rich source of
information about the vacuum structure. In all cases the entropy does not
increase along the flow from the ultraviolet to the infrared.Comment: 10 page
Casimir Forces for Robin Scalar Field on Cylindrical Shell in de Sitter Space
The Casimir stress on a cylinderical shell in background of conformally flat
space-time for massless scalar field is investigated. In the general case of
Robin (mixed) boundary condition formulae are derived for the vacuum
expectation values of the energy-momentum tensor and vacuum forces acting on
boundaries. The special case of the dS bulk is considered then different
cosmological constants are assumed for the space inside and outside of the
shell to have general results applicable to the case of cylindrical domain wall
formations in the early universe.Comment: 10 pages, no figur
How does Casimir energy fall? III. Inertial forces on vacuum energy
We have recently demonstrated that Casimir energy due to parallel plates,
including its divergent parts, falls like conventional mass in a weak
gravitational field. The divergent parts were suitably interpreted as
renormalizing the bare masses of the plates. Here we corroborate our result
regarding the inertial nature of Casimir energy by calculating the centripetal
force on a Casimir apparatus rotating with constant angular speed. We show that
the centripetal force is independent of the orientation of the Casimir
apparatus in a frame whose origin is at the center of inertia of the apparatus.Comment: 8 pages, 2 figures, contribution to QFEXT07 proceeding
Effect of angular momentum on equilibrium properties of a self-gravitating system
The microcanonical properties of a two dimensional system of N classical
particles interacting via a smoothed Newtonian potential as a function of the
total energy E and the total angular momentum L are discussed. In order to
estimate suitable observables a numerical method based on an importance
sampling algorithm is presented. The entropy surface shows a negative specific
heat region at fixed L for all L. Observables probing the average mass
distribution are used to understand the link between thermostatistical
properties and the spatial distribution of particles. In order to define a
phase in non-extensive system we introduce a more general observable than the
one proposed by Gross and Votyakov [Eur. Phys. J. B:15, 115 (2000)]: the sign
of the largest eigenvalue of the entropy surface curvature. At large E the
gravitational system is in a homogeneous gas phase. At low E there are several
collapse phases; at L=0 there is a single cluster phase and for L>0 there are
several phases with 2 clusters. All these pure phases are separated by first
order phase transition regions. The signal of critical behaviour emerges at
different points of the parameter space (E,L). We also discuss the ensemble
introduced in a recent pre-print by Klinko & Miller; this ensemble is the
canonical analogue of the one at constant energy and constant angular momentum.
We show that a huge loss of informations appears if we treat the system as a
function of intensive parameters: besides the known non-equivalence at first
order phase transitions, there exit in the microcanonical ensemble some values
of the temperature and the angular velocity for which the corresponding
canonical ensemble does not exist, i.e. the partition sum diverges.Comment: 17 pages, 11 figures, submitted to Phys. Rev.
The BOOMERANG North America Instrument: a balloon-borne bolometric radiometer optimized for measurements of cosmic background radiation anisotropies from 0.3 to 4 degrees
We describe the BOOMERANG North America (BNA) instrument, a balloon-borne
bolometric radiometer designed to map the Cosmic Microwave Background (CMB)
radiation with 0.3 deg resolution over a significant portion of the sky. This
receiver employs new technologies in bolometers, readout electronics,
millimeter-wave optics and filters, cryogenics, scan and attitude
reconstruction. All these subsystems are described in detail in this paper. The
system has been fully calibrated in flight using a variety of techniques which
are described and compared. It has been able to obtain a measurement of the
first peak in the CMB angular power spectrum in a single balloon flight, few
hours long, and was a prototype of the BOOMERANG Long Duration Balloon (BLDB)
experiment.Comment: 40 pages, 22 figures, submitted to Ap
First Estimations of Cosmological Parameters From BOOMERANG
The anisotropy of the cosmic microwave background radiation contains
information about the contents and history of the universe. We report new
limits on cosmological parameters derived from the angular power spectrum
measured in the first Antarctic flight of the BOOMERANG experiment. Within the
framework of inflation-motivated adiabatic cold dark matter models, and using
only weakly restrictive prior probabilites on the age of the universe and the
Hubble expansion parameter , we find that the curvature is consistent with
flat and that the primordial fluctuation spectrum is consistent with scale
invariant, in agreement with the basic inflation paradigm. We find that the
data prefer a baryon density above, though similar to, the
estimates from light element abundances and big bang nucleosynthesis. When
combined with large scale structure observations, the BOOMERANG data provide
clear detections of both dark matter and dark energy contributions to the total
energy density , independent of data from high redshift
supernovae.Comment: As submitted to PRD, revised longer version with an additional figur
Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American test flight of BOOMERANG
We describe a measurement of the angular power spectrum of anisotropies in
the Cosmic Microwave Background (CMB) from 0.3 degrees to ~10 degrees from the
North American test flight of the BOOMERANG experiment. BOOMERANG is a
balloon-borne telescope with a bolometric receiver designed to map CMB
anisotropies on a Long Duration Balloon flight. During a 6-hour test flight of
a prototype system in 1997, we mapped > 200 square degrees at high galactic
latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and
16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with
a peak at angular scales of ~1 degree with an amplitude ~70 uK.Comment: 5 pages, 1 figure LaTeX, emulateapj.st
Scalar Casimir densities for cylindrically symmetric Robin boundaries
Wightman function, the vacuum expectation values of the field square and the
energy-momentum tensor are investigated for a massive scalar field with general
curvature coupling parameter in the region between two coaxial cylindrical
boundaries. It is assumed that the field obeys general Robin boundary
conditions on bounding surfaces. The application of a variant of the
generalized Abel-Plana formula allows to extract from the expectation values
the contribution from single shells and to present the interference part in
terms of exponentially convergent integrals. The vacuum forces acting on the
boundaries are presented as the sum of self-action and interaction terms. The
first one contains well-known surface divergences and needs a further
renormalization. The interaction forces between the cylindrical boundaries are
finite and are attractive for special cases of Dirichlet and Neumann scalars.
For the general Robin case the interaction forces can be both attractive or
repulsive depending on the coefficients in the boundary conditions. The total
Casimir energy is evaluated by using the zeta function regularization
technique. It is shown that it contains a part which is located on bounding
surfaces. The formula for the interference part of the surface energy is
derived and the energy balance is discussed.Comment: 22 pages, 5 figure
The Dirichlet-to-Robin Transform
A simple transformation converts a solution of a partial differential
equation with a Dirichlet boundary condition to a function satisfying a Robin
(generalized Neumann) condition. In the simplest cases this observation enables
the exact construction of the Green functions for the wave, heat, and
Schrodinger problems with a Robin boundary condition. The resulting physical
picture is that the field can exchange energy with the boundary, and a delayed
reflection from the boundary results. In more general situations the method
allows at least approximate and local construction of the appropriate reflected
solutions, and hence a "classical path" analysis of the Green functions and the
associated spectral information. By this method we solve the wave equation on
an interval with one Robin and one Dirichlet endpoint, and thence derive
several variants of a Gutzwiller-type expansion for the density of eigenvalues.
The variants are consistent except for an interesting subtlety of
distributional convergence that affects only the neighborhood of zero in the
frequency variable.Comment: 31 pages, 5 figures; RevTe
- âŠ