826 research outputs found
Thermodynamical properties of a mean-field plus pairing model and applications for the Fe nuclei
A mean-field plus pairing model for atomic nuclei in the Fe region was
studied using a finite-temperature quantum Monte-Carlo method. We present
results for thermodynamical quantities such as the internal energy and the
specific heat. These results give indications of a phase transition related to
the pairing amongst nucleons, around temperatures of 0.7 MeV. The influence of
the residual interaction and of the size of the model space on the nuclear
level densities is discussed too.Comment: 23 pages, including 17 eps figure
Econometrics
Since the last decade we live in a digitalized world where many actions in human and economic life are monitored. This produces a continuous stream of new, rich and high quality data in the form of panels, repeated cross-sections and long time series . These data resources are available to many researchers at a low cost. This new erais fascinating for econometricians who can adress many open economic questions. To do so, new models are developed that call for elaborate estimation techniques. Fast personal computers play an integral part in making it possible to deal with this increased complexity. --
Multivariate option pricing with time varying volatility and correlations
In recent years multivariate models for asset returns have received much attention, in particular this is the case for models with time varying volatility. In this paper we consider models of this class and examine their potential when it comes to option pricing. Specifically, we derive the risk neutral dynamics for a general class of multivariate heteroskedastic models, and we provide a feasible way to price options in this framework. Our framework can be used irrespective of the assumed underlying distribution and dynamics, and it nests several important special cases. We provide an application to options on the minimum of two indices. Our results show that not only is correlation important for these options but so is allowing this correlation to be dynamic. Moreover, we show that for the general model exposure to correlation risk carries an important premium, and when this is neglected option prices are estimated with errors. Finally, we show that when neglecting the non-Gaussian features of the data, option prices are also estimated with large errors.multivariate risk premia, option pricing, GARCH models
Option pricing with asymmetric heteroskedastic normal mixture models
This paper uses asymmetric heteroskedastic normal mixture models to fit return data and to price options. The models can be estimated straightforwardly by maximum likelihood, have high statistical fit when used on S&P 500 index return data, and allow for substantial negative skewness and time varying higher order moments of the risk neutral distribution. When forecasting out-of-sample a large set of index options between 1996 and 2009, substantial improvements are found compared to several benchmark models in terms of dollar losses and the ability to explain the smirk in implied volatilities. Overall, the dollar root mean squared error of the best performing benchmark component model is 39% larger than for the mixture model. When considering the recent financial crisis this difference increases to 69%.asymmetric heteroskadastic models, finite mixture models, option pricing, out-of- sample prediction, statistical fit
Bosons Confined in Optical Lattices: the Numerical Renormalization Group revisited
A Bose-Hubbard model, describing bosons in a harmonic trap with a
superimposed optical lattice, is studied using a fast and accurate variational
technique (MF+NRG): the Gutzwiller mean-field (MF) ansatz is combined with a
Numerical Renormalization Group (NRG) procedure in order to improve on both.
Results are presented for one, two and three dimensions, with particular
attention to the experimentally accessible momentum distribution and possible
satellite peaks in this distribution. In one dimension, a comparison is made
with exact results obtained using Stochastich Series Expansion.Comment: 10 pages, 15 figure
Asymptotic properties of the Bernstein density copula for dependent data
Copulas are extensively used for dependence modeling. In many cases the data does
not reveal how the dependence can be modeled using a particular parametric copula.
Nonparametric copulas do not share this problem since they are entirely data based.
This paper proposes nonparametric estimation of the density copula for α-mixing data
using Bernstein polynomials. We study the asymptotic properties of the Bernstein
density copula, i.e., we provide the exact asymptotic bias and variance, we establish
the uniform strong consistency and the asymptotic normality
Consequences of the Pauli exclusion principle for the Bose-Einstein condensation of atoms and excitons
The bosonic atoms used in present day experiments on Bose-Einstein
condensation are made up of fermionic electrons and nucleons. In this Letter we
demonstrate how the Pauli exclusion principle for these constituents puts an
upper limit on the Bose-Einstein-condensed fraction. Detailed numerical results
are presented for hydrogen atoms in a cubic volume and for excitons in
semiconductors and semiconductor bilayer systems. The resulting condensate
depletion scales differently from what one expects for bosons with a repulsive
hard-core interaction. At high densities, Pauli exclusion results in
significantly more condensate depletion. These results also shed a new light on
the low condensed fraction in liquid helium II.Comment: 4 pages, 2 figures, revised version, now includes a direct comparison
with hard-sphere QMC results, submitted to Phys. Rev. Let
Semiparametric multivariate volatility models
Estimation of multivariate volatility models is usually carried out by quasi maximum likelihood (QMLE), for which consistency and asymptotic normality have been proven under quite general conditions. However, there may be a substantial efficiency loss of QMLE if the true innovation distribution is not multinormal. We suggest a nonparametric estimation of the multivariate innovation distribution, based on consistent parameter estimates obtained by QMLE. We show that under standard regularity conditions the semiparametric efficiency bound can be attained. Without reparametrizing the conditional covariance matrix (which depends on the particular model used), adaptive estimation is not possible. However, in some cases the e?ciency loss of semiparametric estimation with respect to full information maximum likelihood decreases as the dimension increases. In practice, one would like to restrict the class of possible density functions to avoid the curse of dimensionality. One way of doing so is to impose the constraint that the density belongs to the class of spherical distributions, for which we also derive the semiparametric efficiency bound and an estimator that attains this bound. A simulation experiment demonstrates the e?ciency gain of the proposed estimator compared with QMLE. --Multivariate volatility,GARCH,semiparametric efficiency,adaptivity
Asymptotic properties of the Bernstein density copula for dependent data
Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of the density copula for a-mixing data using Bernstein polynomials. We study the asymptotic properties of the Bernstein density copula, i.e., we provide the exact asymptotic bias and variance, we establish the uniform strong consistency and the asymptotic normality.Nonparametric estimation, Copula, Bernstein polynomial, a-mixing, Asymptotic properties, Boundary bias
A nonparametric copula based test for conditional independence with applications to granger causality
This paper proposes a new nonparametric test for conditional independence, which is based on the comparison of Bernstein copula densities using the Hellinger distance. The test is easy to implement because it does not involve a weighting function in the test statistic, and it can be applied in general settings since there is no restriction on the dimension of the data. In fact, to apply the test, only a bandwidth is needed for the nonparametric copula. We prove that the test statistic is asymptotically pivotal under the null hypothesis, establish local power properties, and motivate the validity of the bootstrap technique that we use in finite sample settings. A simulation study illustrates the good size and power properties of the test. We illustrate the empirical relevance of our test by focusing on Granger causality using financial time series data to test for nonlinear leverage versus volatility feedback effects and to test for causality between stock returns and trading volume. In a third application, we investigate Granger causality between macroeconomic variablesNonparametric tests, Conditional independence, Granger non-causality, Bernstein density copula, Bootstrap, Finance, Volatility asymmetry, Leverage effect, Volatility feedback effect, Macroeconomics
- …