2 research outputs found

    DAC-3 Pointing Stability Analysis Results for SAGE 3 and Other Users of the International Space Station (ISS) Payload Attachment Sites (PAS)

    Get PDF
    The purpose of this paper is to provide final results of a pointing stability analysis for external payload attachment sites (PAS) on the International Space Station (ISS). As a specific example, the pointing stability requirement of the SAGE III atmospheric science instrument was examined in this paper. The instrument requires 10 arcsec stability over 2 second periods. SAGE 3 will be mounted on the ISS starboard side at the lower, outboard FIAS. In this engineering analysis, an open-loop DAC-3 finite element model of ISS was used by the Microgravity Group at Johnson Space Flight Center to generate transient responses at PAS to a limited number of disturbances. The model included dynamics up to 50 Hz. Disturbance models considered included operation of the solar array rotary joints, thermal radiator rotary joints, and control moment gyros. Responses were filtered to model the anticipated vibration attenuation effects of active control systems on the solar and thermal radiator rotary joints. A pointing stability analysis was conducted by double integrating acceleration transient over a 2 second period. Results of the analysis are tabulated for ISS X, Y, and Z Axis rotations. These results indicate that the largest excursions in rotation during pointing occurred due to rapid slewing of the thermal radiator. Even without attenuation at the rotary joints, the resulting pointing error was limited to less than 1.6 arcsec. With vibration control at the joints, to a maximum 0.5 arcsec over a 2 second period. Based on this current level of model definition, it was concluded that between 0 - 50 Hz, the pointing stability requirement for SAGE 3 will not be exceeded by the disturbances evaluated in this study

    Development of experimental apparatus and procedures for measurement of rotordynamic coefficients of loose spline couplings

    No full text
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references.Not availabl
    corecore