6 research outputs found

    Risks to biodiversity from temperature overshoot pathways

    Get PDF
    Temperature overshoot pathways entail exceeding a specified global warming level (e.g. 1.5°C or 2°C) followed by a decline in warming, achieved through anthropogenically enhanced CO2 removal from the atmosphere. However, risks to biodiversity from temperature overshoot pathways are poorly described. Here, we explore biodiversity risks from overshoot by synthesizing existing knowledge and quantifying the dynamics of exposure and de-exposure to potentially dangerous temperatures for more than 30 000 species for a 2°C overshoot scenario. Our results suggest that climate risk to biodiversity from temperature overshoot pathways will arrive suddenly, but decrease only gradually. Peak exposure for biodiversity occurs around the same time as peak global warming, but the rate of de-exposure lags behind the temperature decline. While the global overshoot period lasts around 60 years, the duration of elevated exposure of marine and terrestrial biodiversity is substantially longer (around 100 and 130 years, respectively), with some ecological communities never returning to pre-overshoot exposure levels. Key biodiversity impacts may be irreversible and reliance on widespread CO2 removal to reduce warming poses additional risks to biodiversity through altered land use. Avoiding any temperature overshoot must be a priority for reducing biodiversity risks from climate change, followed by limiting the magnitude and duration of any overshoot. More integrated models that include direct and indirect impacts from overshoot are needed to inform policy. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'

    A SOM-based analysis of the drivers of the 2015–2017 Western Cape drought in South Africa

    Get PDF
    The multi-year (2015–2017) drought in the South West of the Western Cape (SWC) caused a severe water shortage in the summer of 2017–2018, with damaging impacts on the local and regional economy, and Cape Town being in the news one of the first major cities to potentially run out of water. Here, we assess the links between the rainfall deficits during the drought and (a) large scale circulation patterns, (b) moisture transport, and (c) convective available potential energy (CAPE). We used self-organising maps (SOM) analysis to classify daily ERA-interim 850 hPa geopotential height for the period 1979–2017 (March–October) into synoptic types. This allowed us to identify the dominant synoptic states over Southern Africa that influence the local climate in the area affected by the drought. The results show that (a) the frequency of nodes with rain-bearing circulation types decreased during the drought; (b) the amount of rain falling on days that did have rain-bearing circulation types was reduced, especially in the shoulder seasons (March–May and August–October); (c) the rainfall reduction was also associated with anomalously low moisture transport, and convective energy (CAPE), over SWC. These results add to the existing knowledge of drivers of the Cape Town drought, providing an understanding of underlying synoptic processes

    Potential of Impact of Stratospheric Aerosol Geoengineering on Cocoa Suitability in Nigeria

    Get PDF
    Cocoa is an important cash crop that contributes to the economy of Nigeria via job creation and foreign exchange earnings. However, escalating global warming trends threatens Cocoa cultivation and have resulted in a decline and heightened variability in Cocoa production in Nigeria, with potential for further exacerbation in the future. A potential way to reduce the warming is through climate intervention (CI) techniques, including Stratospheric Aerosol Injection (SAI), which involves the injection of sulphur into the stratosphere to reflect a small percentage of incoming solar radiation and lower earth’s temperature. To gauge GHG and SAI impact on Cocoa suitability in Nigeria, we used Geoengineering Large Ensemble Simulations (GLENS) dataset as input into Ecocrop model for historical (2011–2030) and future periods (2070–2089). Our results show GHG impact will increase mean and minimum temperatures (up to 3°C) and total monthly rainfall (up to 15 mm) by the end of century in the southwest and north-east area of Nigeria while rainfall decrease of similar magnitude in the other parts of the country. With SAI intervention, rainfall may decrease by about 10–20 mm over the country and reduce mean and minimum temperature by 2°C. Suitable land for Cocoa cultivation in Nigeria may decrease by 24 and 18% under GHG and SAI, respectively, while unsuitable may increase by 14 and 24% by the end of century. Our study has implications for the economies based on Cocoa production in Nigeria

    Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble

    Get PDF
    Renewable energy is key for the development of African countries, and knowing the best location for the implementation of solar and wind energy projects is important within this context. The purpose of this study is to assess the impact of climate change on solar and wind energy potential over Africa under low end (RCP2.6) and high end (RCP8.5) emission scenarios using a set of new high resolution (25 km) simulations with the Regional Climate Model version 4 (RegCM4) produced as part of the CORDEX-CORE initiative. The projections focus on two periods: (i) the near future (2021–2040) and ii) the mid-century future (2041–2060). The performance of the RegCM4 ensemble mean (Rmean) in simulating relevant present climate variables (1995–2014) is first evaluated with respect to the ERA5 reanalysis and satellite-based data. The Rmean reproduces reasonably well the observed spatial patterns of solar irradiance, air temperature, total cloud cover, wind speed at 100 m above the ground level, photovoltaic power potential (PVP), concentrated solar power output (CSPOUT) and wind power density (WPD) over Africa, though some biases are still evident, especially for cloud-related variables. For the future climate, the sign of the changes is consistent in both scenarios but with more intense magnitude in the middle of the century RCP8.5 scenario. Considering the energy variables, the Rmean projects a general decrease in PVP, which is more pronounced in the mid-century future and under RCP8.5 (up to 2%). Similarly, a general increase in CSPOUT (up to 2%) is projected over the continent under both the RCP2.6 and RCP8.5 scenarios. The projection in WPD shows a similar change (predominant increase) in the near and mid-century future slices under both RCPs with a maximum increase of 20%. The present study suggests that the RCP2.6 emission scenario, in general, favours the implementation of renewable energy in Africa compared to the RCP8.5
    corecore