27 research outputs found

    Surface morphology of DyxOy films grown on Si

    Get PDF
    The crystalline structure and surface morphology of DyxOy dielectric films grown on Si substrates were studied by grazing incidence diffraction and absorption with use of synchrotron radiation and by atomic force microscopy. The crystalline structure and the roughness of DyxOy films were found to be strongly dependent on the deposition rate. The dielectric-silicon interface depends on the type of gas used in the annealing process. Moreover. results from the near edge X-ray absorption studies, have revealed that none of the examined films has a stoichiometry close to the Dy2O3. The level of stoichiometry is determined by the technological conditions. Nevertheless, MOS structures with Dy(x)Q(y) films (EOT similar to 23 angstrom) have shown a rather good DyxOy-Si interface properties, which can be further improve by thermal annealing, and introducing of several additives, therefore DyxOy films can be considered as suitable candidates for gate dielectric in MOS devices. (c) 2006 Elsevier B.V. All rights reserved

    [PSI+] Maintenance Is Dependent on the Composition, Not Primary Sequence, of the Oligopeptide Repeat Domain

    Get PDF
    [PSI+], the prion form of the yeast Sup35 protein, results from the structural conversion of Sup35 from a soluble form into an infectious amyloid form. The infectivity of prions is thought to result from chaperone-dependent fiber cleavage that breaks large prion fibers into smaller, inheritable propagons. Like the mammalian prion protein PrP, Sup35 contains an oligopeptide repeat domain. Deletion analysis indicates that the oligopeptide repeat domain is critical for [PSI+] propagation, while a distinct region of the prion domain is responsible for prion nucleation. The PrP oligopeptide repeat domain can substitute for the Sup35 oligopeptide repeat domain in supporting [PSI+] propagation, suggesting a common role for repeats in supporting prion maintenance. However, randomizing the order of the amino acids in the Sup35 prion domain does not block prion formation or propagation, suggesting that amino acid composition is the primary determinant of Sup35's prion propensity. Thus, it is unclear what role the oligopeptide repeats play in [PSI+] propagation: the repeats could simply act as a non-specific spacer separating the prion nucleation domain from the rest of the protein; the repeats could contain specific compositional elements that promote prion propagation; or the repeats, while not essential for prion propagation, might explain some unique features of [PSI+]. Here, we test these three hypotheses and show that the ability of the Sup35 and PrP repeats to support [PSI+] propagation stems from their amino acid composition, not their primary sequences. Furthermore, we demonstrate that compositional requirements for the repeat domain are distinct from those of the nucleation domain, indicating that prion nucleation and propagation are driven by distinct compositional features

    Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida)

    Get PDF
    Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of ‘taxonomics’. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from highthroughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research

    Disaggregases, molecular chaperones that resolubilize protein aggregates

    Full text link

    A new role for PGRP-S (Tag7) in immune defense: lymphocyte migration is induced by a chemoattractant complex of Tag7 with Mts1

    No full text
    <div><p>PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4<sup>+</sup> and CD8<sup>+</sup> lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.</p></div
    corecore