3 research outputs found

    Cytotoxicity induced by carbon nanotubes in experimental malignant glioma

    Get PDF
    "Despite multiple advances in the diagnosis of brain tumors, there is no effective treatment for glioblastoma. Multiwalled carbon nanotubes (MWCNTs), which were previously used as a diagnostic and drug delivery tool, have now been explored as a possible therapy against neoplasms. However, although the toxicity profile of nanotubes is dependent on the physicochemical characteristics of specific particles, there are no studies exploring how the effectivity of the carbon nanotubes (CNTs) is affected by different methods of production. In this study, we characterize the structure and biocompatibility of four different types of MWCNTs in rat astrocytes and in RG2 glioma cells as well as the induction of cell lysis and possible additive effect of the combination of MWCNTs with temozolomide. We used undoped MWCNTs (labeled simply as MWCNTs) and nitrogen-doped MWCNTs (labeled as N-MWCNTs). The average diameter of both pristine MWCNTs and pristine N-MWCNTs was ~22 and ~35 nm, respectively. In vitro and in vivo results suggested that these CNTs can be used as adjuvant therapy along with the standard treatment to increase the survival of rats implanted with malignant glioma.

    LEARNING CURVE IN SINGLE-LEVEL MINIMALLY INVASIVE TLIF: EXPERIENCE OF A NEUROSURGEON

    No full text
    ABSTRACT Objective: To describe the learning curve that shows the progress of a single neurosurgeon when performing single-level MI-TLIF. Methods: We included 99 consecutive patients who underwent single-level MI-TLIF by the same neurosurgeon (JASS). Patient’s demographic characteristics were analyzed. In addition, surgical time, intraoperative blood loss and hospital stay were evaluated. The learning curves were calculated with a piecewise regression model. Results: The mean age was 54.6 years. The learning curves showed an inverse relationship between the surgical experience and the variable analyzed, reaching an inflection point for surgical time in case 43 and for blood loss in case 48. The mean surgical time was 203.3 minutes (interquartile range [IQR] 150-240 minutes), intraoperative bleeding was 97.4ml (IQR 40-100ml) and hospital stay of four days (IQR 3-5 days). Conclusions: MI-TLIF is a very frequent surgical procedure due to its effectiveness and safety, which has shown similar results to open procedure. According to this study, the required learning curve is slightly higher than for open procedures, and is reached after about 45 cases

    LEARNING CURVE IN SINGLE-LEVEL MINIMALLY INVASIVE TLIF: EXPERIENCE OF A NEUROSURGEON

    No full text
    <div><p>ABSTRACT Objective: To describe the learning curve that shows the progress of a single neurosurgeon when performing single-level MI-TLIF. Methods: We included 99 consecutive patients who underwent single-level MI-TLIF by the same neurosurgeon (JASS). Patient’s demographic characteristics were analyzed. In addition, surgical time, intraoperative blood loss and hospital stay were evaluated. The learning curves were calculated with a piecewise regression model. Results: The mean age was 54.6 years. The learning curves showed an inverse relationship between the surgical experience and the variable analyzed, reaching an inflection point for surgical time in case 43 and for blood loss in case 48. The mean surgical time was 203.3 minutes (interquartile range [IQR] 150-240 minutes), intraoperative bleeding was 97.4ml (IQR 40-100ml) and hospital stay of four days (IQR 3-5 days). Conclusions: MI-TLIF is a very frequent surgical procedure due to its effectiveness and safety, which has shown similar results to open procedure. According to this study, the required learning curve is slightly higher than for open procedures, and is reached after about 45 cases.</p></div
    corecore