36 research outputs found

    Tumor Suppressor Role of hsa-miR-193a-3p and -5p in Cutaneous Melanoma

    Get PDF
    Background: Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. Methods: After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and –5p transfection in cutaneous melanoma cell lines are investigated. Results: In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. Conclusions: Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients

    Fibrinogen: a novel predictor of responsiveness in metastatic melanoma patients treated with bio-chemotherapy: IMI (italian melanoma inter-group) trial

    Get PDF
    PURPOSE: To evaluate a panel of pretreatment clinical and laboratory parameters in metastatic melanoma (MM) in order to verify their impact on response and survival in a single prospective multi-institutional phase III study comparing out-patient chemotherapy (CT) vs bioCT. METHODS: A total of 176 patients were randomised to receive CT (cisplatin, dacarbazine, optional carmustine) or bioCT (the same CT followed by subcutaneous IL-2 plus intramuscular α-IFN-2b). Pretreatment total leucocytes, lymphocytes, eosinophyls, C-reactive protein (CRP), lactate dehydrogenase (LDH), erytrosedimentation rate (ESR), and fibrinogen were analyzed. Some clinical parameters (performance status, age, sex, and disease site) were also considered. As we found a positive trend for bio-CT with no statistical significance in OR (25.3% vs 20.2%) and OS (11 Mo vs 9.5 Mo), all analyses are stratified by treatment arm. RESULTS: In univariate analysis, higher value of lymphocytes percentage (P < .0001), lower value of total leucocytes (P=.005), CRP (P=.003), LHD (P < .0001), ESR (P < .027), fibrinogen (P < .0001), and no liver disease were strongly related to a better survival. In a multivariate analysis, using the Cox proportional hazards model, only fibrinogen (P=.004), LDH (P=.009) and liver disease (P=.04) were found to have an independent role on clinical outcome in metastatic melanoma patients. CONCLUSION: Liver disease and higher LDH and fibrinogen levels had an important impact on survival in MM patients. In particular, fibrinogen has been recently reconsidered both for its determinant role in the host hemostatic system, and for its capability to provide protection against NK and LAK-cell-induced lysis. These observations could have some important implications for therapeutic approaches, in particular when immunological strategies are used

    AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells

    Get PDF
    Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251. The BRAF V600E mutant melanoma cell line, A375, was used as an in-vitro model system. Characterization tools included a cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with Annexin V-FITC/7-AAD double staining, cell cycle analyses, and measurements of changes in intracellular cAMP and calcium concentrations. AM251 exerted a marked cytotoxic effect against A375 human melanoma cells with potency comparable with that observed for cisplatin without significant changes in the human dermal fibroblasts viability. AM251, at a concentration that approximates the IC50, downregulated genes encoding antiapoptotic proteins (BCL2 and survivin) and increased transcription levels of proapoptotic BAX, induced alteration of Annexin V reactivity, DNA fragmentation, chromatin condensation in the cell nuclei, and G2/M phase arrest.AM251 also induced a 40% increase in the basal cAMP levels, but it did not affect intracellular calcium concentrations. The involvement of GPR55, TRPA1, and COX-2 in the AM251 mechanism of action was excluded. The combination of AM251 with celecoxib produced a synergistic antitumor activity, although the mechanism underlying this effect remains to be elucidated. This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma

    Lack of Activity of Docetaxel in Soft Tissue Sarcomas: Results of a Phase II Study of the Italian Group on Rare Tumors

    Get PDF
    Purpose. The prognosis of advanced soft tissue sarcoma is poor, only a few drugs showing some activity with response rates around 15– 25%. Consequently drug development seems mandatory to improve treatment outcome. Following previous favourable EORTC experience, the Italian Group on Rare Tumors started a phase II study with docetaxel to confirm the activity of this drug in soft tissue sarcoma

    Tolerability of intensified intravenous interferon alfa-2b versus the ECOG 1684 schedule as adjuvant therapy for stage III melanoma: a randomized phase III Italian Melanoma Inter-group trial (IMI – Mel.A.) [ISRCTN75125874]

    Get PDF
    BACKGROUND: High-dose interferon alfa-2b (IFNalfa-2b), according to the ECOG 1684 schedule, is the only approved adjuvant treatment for stage III melanoma patients by the FDA and EMEA. However, the risk/benefit profile has been questioned limiting its world-wide use. In the late nineties, the Italian Melanoma Inter-group started a spontaneous randomized clinical trial (RCT) to verify if a more intense, but shorter than the ECOG 1684 regimen, could improve survival without increasing the toxicity profile. The safety analysis in the first 169 patients who completed the treatment is here described. METHODS: Stage III melanoma patients were randomized to receive IFNalfa-2b 20 MU/m(2)/d intravenously (IV) 5 days/week × 4 weeks, repeated for three times on weeks 9 to 12, 17 to 20, 25 to 28 (Dose-Dense/Dose-Intense, DD/DI, arm), or IFNalfa-2b 20 MU/m(2)/d IV 5 days/week × 4 weeks followed by 10 MU/m(2 )subcutaneously (SC) three times per week × 48 weeks (High Dose Interferon, HDI, arm). Toxicity was recorded and graded, according to the WHO criteria, as the worst grade that occurred during each cycle. RESULTS: The most common toxicities in both arms were flu-like and gastrointestinal symptoms, leukopenia, liver and neuro-psichiatric morbidities; with regard to severe toxicity, only leukopenia was statistically more frequent in DD/DI arm than in HDI arm (24% vs 9%) (p = 0.0074), yet, this did not cause an increase in the infection risk. Discontinuation of treatment, due to toxicity, was observed in 13 and 17% of the patients in the DD/DI and HDI arm, respectively. The median actual dose intensity delivered in the DD/DI arm (36.4 MU/m(2)/week) was statistically higher than that delivered in the HDI arm (30.7 MU/m(2)/week) (p = 0.003). CONCLUSION: Four cycles of intravenous high-dose IFNalfa-2b can be safely delivered with an increase in the median dose intensity. Efficacy results from this trial are eagerly awaited

    MC1R variants in childhood and adolescent melanoma: a retrospective pooled analysis of a multicentre cohort.

    Get PDF
    BACKGROUND: Germline variants in the melanocortin 1 receptor gene (MC1R) might increase the risk of childhood and adolescent melanoma, but a clear conclusion is challenging because of the low number of studies and cases. We assessed the association of MC1R variants with childhood and adolescent melanoma in a large study comparing the prevalence of MC1R variants in child or adolescent patients with melanoma to that in adult patients with melanoma and in healthy adult controls. METHODS: In this retrospective pooled analysis, we used the M-SKIP Project, the Italian Melanoma Intergroup, and other European groups (with participants from Australia, Canada, France, Greece, Italy, the Netherlands, Serbia, Spain, Sweden, Turkey, and the USA) to assemble an international multicentre cohort. We gathered phenotypic and genetic data from children or adolescents diagnosed with sporadic single-primary cutaneous melanoma at age 20 years or younger, adult patients with sporadic single-primary cutaneous melanoma diagnosed at age 35 years or older, and healthy adult individuals as controls. We calculated odds ratios (ORs) for childhood and adolescent melanoma associated with MC1R variants by multivariable logistic regression. Subgroup analysis was done for children aged 18 or younger and 14 years or younger. FINDINGS: We analysed data from 233 young patients, 932 adult patients, and 932 healthy adult controls. Children and adolescents had higher odds of carrying MC1R r variants than did adult patients (OR 1·54, 95% CI 1·02-2·33), including when analysis was restricted to patients aged 18 years or younger (1·80, 1·06-3·07). All investigated variants, except Arg160Trp, tended, to varying degrees, to have higher frequencies in young patients than in adult patients, with significantly higher frequencies found for Val60Leu (OR 1·60, 95% CI 1·05-2·44; p=0·04) and Asp294His (2·15, 1·05-4·40; p=0·04). Compared with those of healthy controls, young patients with melanoma had significantly higher frequencies of any MC1R variants. INTERPRETATION: Our pooled analysis of MC1R genetic data of young patients with melanoma showed that MC1R r variants were more prevalent in childhood and adolescent melanoma than in adult melanoma, especially in patients aged 18 years or younger. Our findings support the role of MC1R in childhood and adolescent melanoma susceptibility, with a potential clinical relevance for developing early melanoma detection and preventive strategies. FUNDING: SPD-Pilot/Project-Award-2015; AIRC-MFAG-11831

    Circulating cell-free microRNAs in cutaneous melanoma staging and recurrence or survival prognosis

    No full text
    Cutaneous melanoma is a skin cancer with increasing incidence. Identification of novel clinical biomarkers able to detect the stage of disease and suggest prognosis could improve treatment and outcome for melanoma patients. Cell‐free microRNAs (cf‐miRNAs) are the circulating copies of short non‐coding RNAs involved in gene expression regulation. They are released into the interstitial fluid, are detectable in blood and other body fluids and have interesting features of ideal biomarker candi‐ dates. They are stable outside the cell, tissue specific, vary along with cancer devel‐ opment and are sensitive to change in the disease course such as progression or therapeutic response. Moreover, they are accessible by non‐invasive methods or venipuncture. Some articles have reported different cf‐miRNAs with the potential of diagnostic tools for melanoma staging, recurrence and survival prediction. Although some concordance of results is already emerging, differences in analytical methods, normalization strategies and tumour staging still will require further research and standardization prior to clinical usage of cf‐miRNA analysis. This article reviews this literature with the aim of contributing to a shared focusing on these new promising tools for melanoma treatment and care

    Set-up experiments for microRNAs characterization in plasma and circulating tumor cells derived from patients with cutaneous melanoma

    No full text
    Malignant melanoma is among the most lethal of the cutaneous neoplasms with a 5-year survival of 6% and a median survival of 7.5 months for patients in the later stage of the disease (Luke and Ott, 2014). Acquired resistance may limit the therapeutic potential of currently used drugs (Tronnier et al., 2013, Shtivelman et al., 2014) and novel biomarkers may help clinicians tailor cancer treatments. The present study was aimed at the isolation and characterization of microRNAs (miRNAs) derived from plasma and circulating tumor cells (CTCs) as a non-invasive approach to investigate the changing patterns of drug susceptibility in individual patients. Twenty candidate biomarker miRNAs were selected among those that play a role in cell cycle, survival, proliferation and invasion (Segura et al., 2014). The study received the approval of the local Ethics Committee. Blood samples were collected from healthy volunteers and patients with melanoma at different disease stages (I-IV). Plasma miRNAs were isolated by miRNeasy Serum/Plasma Kit (Qiagen). Before isolating disseminated circulating tumor cells from melanoma patients, set-up experiments were preliminary carried out in samples enriched with cells derived from the A375 human melanoma cell line. We tested an immunomagnetic technique using the antibody mouse anti-MCSP (Melanoma Chonidroitin Sulfate Proteoglycane) conjugated to magnetic beads (CELLection Pan Mouse IgG Kita, Invitrogen) and a system based on the cell separation by density gradient centrifugation (OncoQuick, Greiner Bio-One, Germany). Although immunomagnetic method is commonly used for CTC isolation, we demonstrated by confocal microscopy that seeding dilutions of A375 into normal blood (10 cells per ml) resulted in consistent loss of cells during the immunobead procedure. This was probably due to a scarcity of tumor cells associated to an excessive cell stress during erythrocyte lysis and magnetic separation. At variance with this, cell separation by density gradient centrifugation allowed us to obtain a detectable A375 cells in samples containing only 4 cells per ml of blood (30 cells total). Quantification by Real-Time PCR of the expression levels of selected plasma-derived and CTC-associated miRNAs in patients with metastatic melanoma before and after drug treatment is in progress. REFERENCES Luke J.J. and Ott. P.A. (2014) Drug, healthcare and patient safety 6: 77–88. Tronnier M., Semkova K., Wollina U. et al. (2013) Wien Med Wochenschr 163: 354-8 Shtivelman E., M.A., Hwu P., et al. (2014) Oncotarget 5: 1701–1752. Segura M.F., Greenwald H.S., Hanniford D., et al. (2014) Carcinogenesis 33: 1823–32. Powered b

    Anticancer activity of anandamide in human cutaneous melanoma cells

    No full text
    Cannabinoids are implicated in the control of cell proliferation, but little is known about the role of the endocannabinoid system in human malignant melanoma. This study was aimed at characterizing the in vitro antitumor activity of anandamide (AEA) in A375 melanoma cells. The mRNA expression of genes that code for proteins involved in the metabolism and in the mechanism of AEA action was assessed by RT-PCR. Cell viability was tested using WST-1 assay and the apoptotic cell death was determined by measuring caspase 3/7 activities. A375 cells express high levels of fatty acid amide hydrolase (FAAH), cyclooxygenase (COX)-2, cannabinoid receptor 1 (CB1), transient receptor potential cation channel subfamily V member 1 (TRPV1) and G-protein-coupled receptor 55 (GPR55) genes. AEA induced a concentration-dependent cytotoxicity with an IC50 of 5.8±0.7 ”M and such an effect was associated to a caspase-dependent apoptotic pathway. AEA cytotoxicity was potentiated by FAAH inhibition (2-fold increase, p<0.05) and mitigated by COX-2 or lipoxygenase (LOX) inhibition (5- and 3-fold decrease, respectively; p<0.01). Blocking CB1 receptors partially decreased AEA cytotoxicity, whereas selective antagonism on the TRPV1 barely affected the mechanism of AEA action. Finally, methyl-ÎČ-cyclodextrin, a membrane cholesterol depletory, completely reversed the cytotoxicity induced by the selective GPR55 agonist, O-1602, and AEA. Overall, these findings demonstrate that AEA induces cytotoxicity against human melanoma cells in the micromolar range of concentrations through a complex mechanism, which involves COX-2 and LOX-derived product synthesis and CB1 activation. Lipid raft modulation, probably linked to GPR55 activation, might also have a role

    Anticancer activity of anandamide in human cutaneous melanoma cells

    No full text
    Cannabinoids are implicated in the control of cell proliferation, but little is known about the role of the endocannabinoid system in human malignant melanoma. This study was aimed at characterizing the in vitro antitumor activity of anandamide (AEA) in A375 melanoma cells. The mRNA expression of genes that code for proteins involved in the metabolism and in the mechanism of AEA action was assessed by RT-PCR. Cell viability was tested using WST-1 assay and the apoptotic cell death was determined by measuring caspase 3/7 activities. A375 cells express high levels of fatty acid amide hydrolase (FAAH), cyclooxygenase (COX)-2, cannabinoid receptor 1 (CB1), transient receptor potential cation channel subfamily V member 1 (TRPV1) and G-protein-coupled receptor 55 (GPR55) genes. AEA induced a concentration-dependent cytotoxicity with an IC50 of 5.8 ± 0.7 ”M and such an effect was associated to a caspase-dependent apoptotic pathway. AEA cytotoxicity was potentiated by FAAH inhibition (2-fold increase, p<0.05) and mitigated by COX-2 or lipoxygenase (LOX) inhibition (5- and 3-fold decrease, respectively; p<0.01). Blocking CB1 receptors partially decreased AEA cytotoxicity, whereas selective antagonism on the TRPV1 barely affected the mechanism of AEA action. Finally, methyl-ÎČ-cyclodextrin, a membrane cholesterol depletory, completely reversed the cytotoxicity induced by the selective GPR55 agonist, O-1602, and AEA. Overall, these findings demonstrate that AEA induces cytotoxicity against human melanoma cells in the micromolar range of concentrations through a complex mechanism, which involves COX-2 and LOX-derived product synthesis and CB1 activation. Lipid raft modulation, probably linked to GPR55 activation, might also have a role
    corecore