6,558 research outputs found
Fitting Pulsar Wind Tori. II. Error Analysis and Applications
We have applied the torus fitting procedure described in Ng & Romani (2004)
to PWNe observations in the Chandra data archive. This study provides
quantitative measurement of the PWN geometry and we characterize the
uncertainties in the fits, with statistical errors coming from the fit
uncertainties and systematic errors estimated by varying the assumed fitting
model. The symmetry axis of the PWN are generally well determined, and
highly model-independent. We often derive a robust value for the spin
inclination . We briefly discuss the utility of these results in
comparison with new radio and high energy pulse measurementsComment: 15 pages, 3 figures, ApJ in pres
The Spectral Energy Distribution of the High-Z Blazar Q0906+693
We describe further observations of QSO J0906+6930, a z=5.48 blazar likely to
be detected in gamma-rays. New radio and X-ray data place significant
constraints on any kpc-scale extension of the VLBA-detected jet. Improved
optical spectroscopy detects absorption from an intervening galaxy at z=1.849
and raise the possibility that this distant, bright source is lensed. We
combine the new data into an improved SED for the blazar core and comment on
the Compton keV-GeV flux component.Comment: 10pp, 3 figures, accpeted for publication in the Astronomical Journa
A multi-class approach for ranking graph nodes: models and experiments with incomplete data
After the phenomenal success of the PageRank algorithm, many researchers have
extended the PageRank approach to ranking graphs with richer structures beside
the simple linkage structure. In some scenarios we have to deal with
multi-parameters data where each node has additional features and there are
relationships between such features.
This paper stems from the need of a systematic approach when dealing with
multi-parameter data. We propose models and ranking algorithms which can be
used with little adjustments for a large variety of networks (bibliographic
data, patent data, twitter and social data, healthcare data). In this paper we
focus on several aspects which have not been addressed in the literature: (1)
we propose different models for ranking multi-parameters data and a class of
numerical algorithms for efficiently computing the ranking score of such
models, (2) by analyzing the stability and convergence properties of the
numerical schemes we tune a fast and stable technique for the ranking problem,
(3) we consider the issue of the robustness of our models when data are
incomplete. The comparison of the rank on the incomplete data with the rank on
the full structure shows that our models compute consistent rankings whose
correlation is up to 60% when just 10% of the links of the attributes are
maintained suggesting the suitability of our model also when the data are
incomplete
Birth Kick Distributions and the Spin-Kick Correlation of Young Pulsars
Evidence from pulsar wind nebula symmetry axes and radio polarization
observations suggests that pulsar motions correlate with the spin directions.
We assemble this evidence for young isolated pulsars and show how it can be
used to quantitatively constrain birth kick scenarios. We illustrate by
computing several plausible, but idealized, models where the momentum thrust is
proportional to the neutrino cooling luminosity of the proto-neutron star. Our
kick simulations include the effects of pulsar acceleration and spin-up and our
maximum likelihood comparison with the data constrains the model parameters.
The fit to the pulsar spin and velocity measurements suggests that: i) the
anisotropic momentum required amounts to ~10% of the neutrino flux, ii) while a
pre-kick spin of the star is required, the preferred magnitude is small
10-20rad/s, so that for the best-fit models iii) the bulk of the spin is
kick-induced with ~120rad/s and iv) the models suggest that the
anisotropy emerges on a timescale ~1-3s.Comment: 37 pages, 13 figures, ApJ accepte
- …
