29 research outputs found

    Reproductive Meristem22 is a unique marker for the early stages of stamen development

    Get PDF
    Stamens undergo a very elaborate development program that gives rise not only to many specific tissue types, but also to the male gametes. The specification of stamen identity is coordinated by a group of homeotic genes such as APETALA3 (AP3) and PISTILLATA (PI), AGAMOUS (AG) and SEPALLATA (SEP1-4) genes. Genome-wide transcriptomic comparisons between floral buds of wild-type and ap3 mutants led to the identification of the REM22 gene, which is expressed in the early stages of stamen development. This gene is member of the plant-specific B3 DNA-binding superfamily. In this work, we dissect the spatio-temporal expression pattern of REM22 during the early stages of stamen development. To this end, both in situ hybridization analyses as well as in vivo fluorescence strategies were employed. At stage 4 of flower development, REM22 is expressed exclusively in those undifferentiated cells of the floral meristem that will give rise to the stamen primordia. At stage 5, REM22 expression is restricted to the epidermal and the subepidermal layers of anther primordia. Later, this expression is confined to the middle layer and the differentiating tapetal cells. After stage 10 when all the tissues of the anther have differentiated, REM22 expression is no longer detectable. Furthermore, we examined the pREM22::GUS-GFP marker line in an inducible system where the ectopic AG function is used to promote microsporogenesis. The data support the idea that REM22 expression is a useful marker to study the early stages of stamen development

    Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family <it>Luteoviridae</it>, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus <it>Polerovirus</it>, family <it>Luteoviridae</it>.</p> <p>Results</p> <p>Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton <it>Dcl </it>transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated.</p> <p>Conclusions</p> <p>This is the first report on the profile of sRNAs in a plant infected with a virus from the family <it>Luteoviridae</it>. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.</p

    Selection and validation of reference genes by RT-qPCR under photoperiodic induction of flowering in sugarcane ( Saccharum spp.)

    Get PDF
    Although reference genes have previously been used in the expression analysis of genes involved in sugarcane flowering they had not been experimentally validated for stability and consistency of expression between different samples over a wide range of experimental conditions. Here we report the analysis of candidate reference genes in different tissue types, at different temporal time-points, in both short and long day photoperiodic treatments. The stability of the candidate reference genes in all conditions was evaluated with NormFinder, BestKeeper, and RefFinder algorithms that complement each other for a more robust analysis. As the Normfinder algorithm was more appropriate for our experimental conditions, greater emphasis was placed on Normfinder when choosing the most stable genes. UBQ1 and TUB were shown to be the most stable reference genes to use for normalizing RT-qPCR gene expression data during floral induction, whilst 25SrRNA1 and GAPDH were the least stable. Their use as a reference gene pair was validated by analyzing the expression of two differentially expressed target genes (PIL5 and LHP1). The UBQ1/TUB reference genes combination was able to reveal small significant differences in gene expression of the two target genes that were not detectable when using the least stable reference gene combination. These results can be used to inform the choice of reference genes to use in the study of the sugarcane floral induction pathway. Our work also demonstrates that both PIL5 and LHP1 are significantly up-regulated in the initial stages of photoperiodic induction of flowering in sugarcane

    Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification

    Get PDF
    Abstract\ud \ud Background\ud Glycoside hydrolases (GHs) and accessory proteins are key components for efficient and cost-effective enzymatic hydrolysis of polysaccharides in modern, biochemically based biorefineries. Currently, commercialized GHs and accessory proteins are produced by ascomycetes. However, the role of wood decay basidiomycetes proteins in biomass saccharification has not been extensively pursued. Wood decay fungi degrade polysaccharides in highly lignified tissues in natural environments, and are a promising enzyme source for improving enzymatic cocktails that are designed for in vitro lignocellulose conversion.\ud \ud \ud Results\ud GHs and accessory proteins were produced by representative brown- and white-rot fungi, Laetiporus sulphureus and Pleurotus ostreatus, respectively. Concentrated protein extracts were then used to amend commercial enzymatic cocktails for saccharification of alkaline-sulfite pretreated sugarcane bagasse. The main enzymatic activities found in the wood decay fungal protein extracts were attributed to endoglucanases, xylanases and β-glucosidases. Cellobiohydrolase (CBH) activities in the L. sulphureus and P. ostreatus extracts were low and nonexistent, respectively. The initial glucan conversion rates were boosted when the wood decay fungal proteins were used to replace half of the enzymes from the commercial cocktails. L. sulphureus proteins increased the glucan conversion levels, with values above those observed for the full load of commercial enzymes. Wood decay fungal proteins also enhanced the xylan conversion efficiency due to their high xylanase activities. Proteomic studies revealed 104 and 45 different proteins in the P. ostreatus and L. sulphureus extracts, respectively. The enhancement of the saccharification of alkaline-pretreated substrates by the modified enzymatic cocktails was attributed to the following protein families: GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases.\ud \ud \ud Conclusions\ud The extracellular proteins produced by wood decay fungi provide useful tools to improve commercial enzyme cocktails that are currently used for the saccharification of alkaline-pretreated lignocellulosic substrates. The relevant proteins encompass multiple glycoside hydrolase families, including the GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases.The authors thank J.M. Silva and J.C. Tavares for technical assistance. This work\ud was supported by FAPESP (contract numbers 08/56256-5 and 2014/06923-6),\ud CNPq (contract numbers 442333/2014-5; 310186/2014-5 and 140796/2013-\ud 4), and CAPES. We gratefully acknowledge the provision of time on the MAS\ud and NGS facilities (LNBio and CTBE, respectively) at the National Center for\ud Research in Energy and Materials (CNPEM).\ud The work was supported by Fundação de Amparo à Pesquisa do Estado de\ud São Paulo (FAPESP), contract numbers 08/56256-5 and 2014/06923-6, and by\ud Conselho Nacional de Pesquisa (CNPq), contract numbers 442333/2014-5;\ud 310186/2014-5, 140796/2013-4

    Transcriptomic analysis of changes in gene expression during flowering induction in sugarcane under controlled photoperiodic conditions

    Get PDF
    Flowering is of utmost relevance for the agricultural productivity of the sugarcane bioeconomy, but data and knowledge of the genetic mechanisms underlying its photoperiodic induction are still scarce. An understanding of the molecular mechanisms that regulate the transition from vegetative to reproductive growth in sugarcane could provide better control of flowering for breeding. This study aimed to investigate the transcriptome of +1 mature leaves of a sugarcane cultivar subjected to florally inductive and non-inductive photoperiodic treatments to identify gene expression patterns and molecular regulatory modules. We identified 7,083 differentially expressed (DE) genes, of which 5,623 showed significant identity to other plant genes. Functional group analysis showed differential regulation of important metabolic pathways involved in plant development, such as plant hormones (i.e., cytokinin, gibberellin, and abscisic acid), light reactions, and photorespiration. Gene ontology enrichment analysis revealed evidence of upregulated processes and functions related to the response to abiotic stress, photoprotection, photosynthesis, light harvesting, and pigment biosynthesis, whereas important categories related to growth and vegetative development of plants, such as plant organ morphogenesis, shoot system development, macromolecule metabolic process, and lignin biosynthesis, were downregulated. Also, out of 76 sugarcane transcripts considered putative orthologs to flowering genes from other plants (such as Arabidopsis thaliana, Oryza sativa, and Sorghum bicolor), 21 transcripts were DE. Nine DE genes related to flowering and response to photoperiod were analyzed either at mature or spindle leaves at two development stages corresponding to the early stage of induction and inflorescence primordia formation. Finally, we report a set of flowering-induced long non-coding RNAs and describe their level of conservation to other crops, many of which showed expression patterns correlated against those in the functionally grouped gene network

    Analysis of the PEBP gene family and identification of a novel FLOWERING LOCUS T orthologue in sugarcane

    Get PDF
    Sugarcane (Saccharum spp.) is an important economic crop for both sugar and biomass, the yields of which are negatively affected by flowering. The molecular mechanisms controlling flowering in sugarcane are nevertheless poorly understood. RNA-seq data analysis and database searches have enabled a comprehensive description of the PEBP gene family in sugarcane. It is shown to consist of at least 13 FLOWERING LOCUS T (FT)-like genes, two MOTHER OF FT AND TFL (MFT)-like genes, and four TERMINAL FLOWER (TFL)-like genes. As expected, these genes all show very high homology to their corresponding genes in Sorghum, and also to FT-like, MFT-like, and TFL-like genes in maize, rice, and Arabidopsis. Functional analysis in Arabidopsis showed that the sugarcane ScFT3 gene can rescue the late flowering phenotype of the Arabidopsis ft-10 mutant, whereas ScFT5 cannot. High expression levels of ScFT3 in leaves of short day-induced sugarcane plants coincided with initial stages of floral induction in the shoot apical meristem as shown by histological analysis of meristem dissections. This suggests that ScFT3 is likely to play a role in floral induction in sugarcane; however, other sugarcane FT-like genes may also be involved in the flowering process

    Evolution of the B3 DNA Binding Superfamily: New Insights into REM Family Gene Diversification

    Get PDF
    Background: The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily. Methodology: In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family. Conclusions: Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. Thes

    microRNAs as reference genes for quantitative PCR in cotton

    No full text
    <div><p>Cotton (<i>Gossypium hirsutum</i>) is the most important non-food plant in the world. Studies concerning the fiber quality and plant fitness of cotton at molecular level depend on high sensitive and reproducible gene-expression assays. However, only a few reports have described genes suitable for normalizing gene expression data. In this study, we report for the first time that microRNAs (miRNAs) are reliable reference genes (RGs) for cotton gene expression normalization in quantitative real-time reverse transcription (RT)-PCR. The stability of cotton miRNAs was assayed in root, stem, leaf and flower samples from three different cultivars [FiberMax (FM966), Delta Opal (DO) and Cedro] and under conditions of biotic stress caused by infection with Cotton leafroll dwarf virus (CLRDV). The stability of mRNAs already described as reference genes in cotton was also assessed. The geNorm, NormFinder, BestKeeper and ΔCt algorithms were used to select the best reference genes. In 8 of the 12 sets tested, miRNAs (miR172, 168 and 390) were found to be the best RGs. To validate the best selected RGs, miR159, miR164, miR2118, miR2910, miR3476, <i>GhDCL2</i> and <i>GhDCL4</i> expression levels were evaluated under biotic stress conditions, and miR164 and a putative <i>myo-inositol oxigenase</i> gene (<i>GhMIOX</i>) were assessed in leaves and flowers. The RGs selected in this work proved to be excellent reference genes in the two cases studied. Our results support the use of miRNAs as reference genes for miRNA and protein-coding genes.</p></div

    Plant arginyltransferases (ATEs)

    No full text
    Abstract Regulation of protein stability and/or degradation of misfolded and damaged proteins are essential cellular processes. A part of this regulation is mediated by the so-called N-end rule proteolytic pathway, which, in concert with the ubiquitin proteasome system (UPS), drives protein degradation depending on the N-terminal amino acid sequence. One important enzyme involved in this process is arginyl-t-RNA transferase, known as ATE. This enzyme acts post-translationally by introducing an arginine residue at the N-terminus of specific protein targets to signal degradation via the UPS. However, the function of ATEs has only recently begun to be revealed. Nonetheless, the few studies to date investigating ATE activity in plants points to the great importance of the ATE/N-end rule pathway in regulating plant signaling. Plant development, seed germination, leaf morphology and responses to gas signaling in plants are among the processes affected by the ATE/N-end rule pathway. In this review, we present some of the known biological functions of plant ATE proteins, highlighting the need for more in-depth studies on this intriguing pathway
    corecore