4 research outputs found

    Discovery of Potent and Selective 8‑Fluorotriazolopyridine c‑Met Inhibitors

    No full text
    The overexpression of c-Met and/or hepatocyte growth factor (HGF), the amplification of the MET gene, and mutations in the c-Met kinase domain can activate signaling pathways that contribute to cancer progression by enabling tumor cell proliferation, survival, invasion, and metastasis. Herein, we report the discovery of 8-fluorotriazolopyridines as inhibitors of c-Met activity. Optimization of the 8-fluorotriazolopyridine scaffold through the combination of structure-based drug design, SAR studies, and metabolite identification provided potent (cellular IC<sub>50</sub> < 10 nM), selective inhibitors of c-Met with desirable pharmacokinetic properties that demonstrate potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver pharmacodynamic model

    Discovery of (<i>R</i>)‑6-(1-(8-Fluoro-6-(1-methyl‑1<i>H</i>‑pyrazol-4-yl)-[1,2,4]triazolo[4,3‑<i>a</i>]pyridin-3-yl)ethyl)-3-(2-methoxyethoxy)-1,6-naphthyridin-5(6<i>H</i>)‑one (AMG 337), a Potent and Selective Inhibitor of MET with High Unbound Target Coverage and Robust In Vivo Antitumor Activity

    No full text
    Deregulation of the receptor tyrosine kinase mesenchymal epithelial transition factor (MET) has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, we report the discovery of compound <b>23</b> (AMG 337), which demonstrates nanomolar inhibition of MET kinase activity, desirable preclinical pharmacokinetics, significant inhibition of MET phosphorylation in mice, and robust tumor growth inhibition in a MET-dependent mouse efficacy model

    Sulfonamides as Selective Na<sub>V</sub>1.7 Inhibitors: Optimizing Potency, Pharmacokinetics, and Metabolic Properties to Obtain Atropisomeric Quinolinone (AM-0466) that Affords Robust in Vivo Activity

    No full text
    Because of its strong genetic validation, Na<sub>V</sub>1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as Na<sub>V</sub>1.7 inhibitors that demonstrate high levels of selectivity over other Na<sub>V</sub> isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation. WO 2014201206, 2014] of Na<sub>V</sub>1.7, which demonstrate nanomolar inhibition of Na<sub>V</sub>1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound <b>39</b> (AM-0466) demonstrated robust pharmacodynamic activity in a Na<sub>V</sub>1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity

    Sulfonamides as Selective Na<sub>V</sub>1.7 Inhibitors: Optimizing Potency, Pharmacokinetics, and Metabolic Properties to Obtain Atropisomeric Quinolinone (AM-0466) that Affords Robust in Vivo Activity

    No full text
    Because of its strong genetic validation, Na<sub>V</sub>1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as Na<sub>V</sub>1.7 inhibitors that demonstrate high levels of selectivity over other Na<sub>V</sub> isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation. WO 2014201206, 2014] of Na<sub>V</sub>1.7, which demonstrate nanomolar inhibition of Na<sub>V</sub>1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound <b>39</b> (AM-0466) demonstrated robust pharmacodynamic activity in a Na<sub>V</sub>1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity
    corecore