41 research outputs found

    Mass scaling and non-adiabatic effects in photoassociation spectroscopy of ultracold strontium atoms

    Get PDF
    We report photoassociation spectroscopy of ultracold 86^{86}Sr atoms near the intercombination line and provide theoretical models to describe the obtained bound state energies. We show that using only the molecular states correlating with the 1S0^1S_0++3P1^3P_1 asymptote is insufficient to provide a mass scaled theoretical model that would reproduce the bound state energies for all isotopes investigated to date: 84^{84}Sr, 86^{86}Sr and 88^{88}Sr. We attribute that to the recently discovered avoided crossing between the 1S0^1S_0++3P1^3P_1 0u+0_u^+ (3Πu^3\Pi_u) and 1S0^1S_0++1D2^1D_2 0u+0_u^+ (1Σu+^1\Sigma^+_u) potential curves at short range and we build a mass scaled interaction model that quantitatively reproduces the available 0u+0_u^+ and 1u1_u bound state energies for the three stable bosonic isotopes. We also provide isotope-specific two-channel models that incorporate the rotational (Coriolis) mixing between the 0u+0_u^+ and 1u1_u curves which, while not mass scaled, are capable of quantitatively describing the vibrational splittings observed in experiment. We find that the use of state-of-the-art ab initio potential curves significantly improves the quantitative description of the Coriolis mixing between the two -8 GHz bound states in 88^{88}Sr over the previously used model potentials. We show that one of the recently reported energy levels in 84^{84}Sr does not follow the long range bound state series and theorize on the possible causes. Finally, we give the Coriolis mixing angles and linear Zeeman coefficients for all of the photoassociation lines. The long range van der Waals coefficients C6(0u+)=3868(50)C_6(0_u^+)=3868(50)~a.u. and C6(1u)=4085(50)C_6(1_u)=4085(50)~a.u. are reported.Comment: 14 pages, 7 tables, 5 figures. Submitted to Phys. Rev.

    Controlled Production of Sub-Radiant States of a Diatomic Molecule in an Optical Lattice

    Full text link
    We report successful production of sub-radiant states of a two-atom system in a three-dimensional optical lattice starting from doubly occupied sites in a Mott insulator phase of a quantum gas of atomic ytterbium. We can selectively produce either sub-radiant 1g state or super-radiant 0u state by choosing the excitation laser frequency. The inherent weak excitation rate for the sub-radiant 1g state is overcome by the increased atomic density due to the tight-confinement in a three-dimensional optical lattice. Our experimental measurements of binding energies, linewidth, and Zeeman shift confirm observation of sub-radiant levels of the 1g state of the Yb_2 molecule.Comment: To be published in Phys. Rev. Let

    Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s-wave scattering lengths

    Full text link
    By performing high-resolution two-color photoassociation spectroscopy, we have successfully determined the binding energies of several of the last bound states of the homonuclear dimers of six different isotopes of ytterbium. These spectroscopic data are in excellent agreement with theoretical calculations based on a simple model potential, which very precisely predicts the s-wave scattering lengths of all 28 pairs of the seven stable isotopes. The s-wave scattering lengths for collision of two atoms of the same isotopic species are 13.33(18) nm for ^{168}Yb, 3.38(11) nm for ^{170}Yb, -0.15(19) nm for ^{171}Yb, -31.7(3.4) nm for ^{172}Yb, 10.55(11) nm for ^{173}Yb, 5.55(8) nm for ^{174}Yb, and -1.28(23) nm for ^{176}Yb. The coefficient of the lead term of the long-range van der Waals potential of the Yb_2 molecule is C_6=1932(30) atomic units (Eha06≈9.573×10−26(E_h a_0^6 \approx 9.573\times 10^{-26} J nm^6).Comment: 9 pages, 7 figure

    Buffer gas induced collision shift for the 88^{88}Sr 1S0−3P1\bf{^1S_0-^3P_1} clock transition

    Full text link
    Precision saturation spectroscopy of the 88Sr1S0−3P1^{88}{\rm Sr} ^1S_0-^3P_1 is performed in a vapor cell filled with various rare gas including He, Ne, Ar, and Xe. By continuously calibrating the absolute frequency of the probe laser, buffer gas induced collision shifts of ∌\sim kHz are detected with gas pressure of 1-20 mTorr. Helium gave the largest fractional shift of 1.6×10−9Torr−11.6 \times 10^{-9} {\rm Torr}^{-1}. Comparing with a simple impact calculation and a Doppler-limited experiment of Holtgrave and Wolf [Phys. Rev. A {\bf 72}, 012711 (2005)], our results show larger broadening and smaller shifting coefficient, indicating effective atomic loss due to velocity changing collisions. The applicability of the result to the 1S0−3P0^1S_0-^3P_0 optical lattice clock transition is also discussed

    Weakly bound molecules as sensors of new gravitylike forces

    Get PDF
    Several extensions to the Standard Model of particle physics, including light dark matter candidates and unification theories predict deviations from Newton’s law of gravitation. For macroscopic distances, the inverse-square law of gravitation is well confirmed by astrophysical observations and laboratory experiments. At micrometer and shorter length scales, however, even the state-of-the-art constraints on deviations from gravitational interaction, whether provided by neutron scattering or precise measurements of forces between macroscopic bodies, are currently many orders of magnitude larger than gravity itself. Here we show that precision spectroscopy of weakly bound molecules can be used to constrain non-Newtonian interactions between atoms. A proof-of-principle demonstration using recent data from photoassociation spectroscopy of weakly bound Yb2 molecules yields constraints on these new interactions that are already close to state-of-the-art neutron scattering experiments. At the same time, with the development of the recently proposed optical molecular clocks, the neutron scattering constraints could be surpassed by at least two orders of magnitude

    Measurement and calculation of CO (7-0) overtone line intensities

    Get PDF
    Intensities of 14 lines in the sixth overtone (7-0) band of carbon monoxide (12C16O) are measured in the visible range between 14 300 and 14 500 cm-1 using a frequency-stabilized cavity ring-down spectrometer. This is the first observation of such a high and weak overtone spectrum of the CO molecule. A theoretical model is constructed and tested based on the use of a high accuracy ab initio dipole moment curve and a semi-empirical potential energy curve. Accurate studies of high overtone transitions provide a challenge to both experiment and theory as the lines are very weak: below 2 × 10-29 cm molecule-1 at 296 K. Agreement between theory and experiment within the experimental uncertainty of a few percent is obtained. However, this agreement is only achieved after issues with the stability of the Davidson correction to the multi-reference configuration interaction calculations are addressed

    Absolute measurement of the ^{1}S_{0} − ^{3}P_{0} clock transition in neutral ^{88}Sr over the 330 km-long stabilized fibre optic link

    Get PDF
    We report a stability below 7×10−177\times 10{}^{-17} of two independent optical lattice clocks operating with bosonic 88{}^{88}Sr isotope. The value (429228066418008.3(1.9)syst{}_{syst}(0.9)stat{}_{stat}~Hz) of the absolute frequency of the 1S0{}^{1}S_{0} - 3P0{}^{3}P_{0} transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures

    Subpromille Measurements and Calculations of CO (3–0) Overtone Line Intensities

    Get PDF
    Intensities of lines in the near-infrared second overtone band (3–0) of {12}^C{16}^O are measured and calculated to an unprecedented degree of precision and accuracy. Agreement between theory and experiment to better than 1‰ is demonstrated by results from two laboratories involving two independent absorption- and dispersion-based cavity-enhanced techniques. Similarly, independent Fourier transform spectroscopy measurements of stronger lines in this band yield mutual agreement and consistency with theory at the 1‰ level. This set of highly accurate intensities can provide an intrinsic reference for reducing biases in future measurements of spectroscopic peak areas
    corecore