11,698 research outputs found
Interacting topological phases in multiband nanowires
We show that semiconductor nanowires coupled to an s-wave superconductor
provide a playground to study effects of interactions between different
topological superconducting phases supporting Majorana zero-energy modes. We
consider quasi-one dimensional system where the topological phases emerge from
different transverse subbands in the nanowire. In a certain parameter space, we
show that there is a multicritical point in the phase diagram where the
low-energy theory is equivalent to the one describing two coupled Majorana
chains. We study effect of interactions as well as symmetry-breaking
perturbations on the topological phase diagram in the vicinity of this
multicritical point. Our results shed light on the stability of the topological
phase around the multicritical point and have important implications for the
experiments on Majorana nanowires.Comment: 8 pages, 2 figures; final version to appear in PR
Gas low pressure low flow rate metering system Patent
Flowmeters for sensing low fluid flow rate and pressure for application to respiration rate studie
High- and low-pressure pneumotachometers measure respiration rates accurately in adverse environments
Respiration-rate transducers in the form of pneumotachometers measure respiration rates of pilots operating high performance research aircraft. In each low pressure or high pressure oxygen system a sensor is placed in series with the pilots oxygen supply line to detect gas flow accompanying respiration
Energy Density-Flux Correlations in an Unusual Quantum State and in the Vacuum
In this paper we consider the question of the degree to which negative and
positive energy are intertwined. We examine in more detail a previously studied
quantum state of the massless minimally coupled scalar field, which we call a
``Helfer state''. This is a state in which the energy density can be made
arbitrarily negative over an arbitrarily large region of space, but only at one
instant in time. In the Helfer state, the negative energy density is
accompanied by rapidly time-varying energy fluxes. It is the latter feature
which allows the quantum inequalities, bounds which restrict the magnitude and
duration of negative energy, to hold for this class of states. An observer who
initially passes through the negative energy region will quickly encounter
fluxes of positive energy which subsequently enter the region. We examine in
detail the correlation between the energy density and flux in the Helfer state
in terms of their expectation values. We then study the correlation function
between energy density and flux in the Minkowski vacuum state, for a massless
minimally coupled scalar field in both two and four dimensions. In this latter
analysis we examine correlation functions rather than expectation values.
Remarkably, we see qualitatively similar behavior to that in the Helfer state.
More specifically, an initial negative energy vacuum fluctuation in some region
of space is correlated with a subsequent flux fluctuation of positive energy
into the region. We speculate that the mechanism which ensures that the quantum
inequalities hold in the Helfer state, as well as in other quantum states
associated with negative energy, is, at least in some sense, already
``encoded'' in the fluctuations of the vacuum.Comment: 21 pages, 7 figures; published version with typos corrected and one
added referenc
UniquID: A Quest to Reconcile Identity Access Management and the Internet of Things
The Internet of Things (IoT) has caused a revolutionary paradigm shift in
computer networking. After decades of human-centered routines, where devices
were merely tools that enabled human beings to authenticate themselves and
perform activities, we are now dealing with a device-centered paradigm: the
devices themselves are actors, not just tools for people. Conventional identity
access management (IAM) frameworks were not designed to handle the challenges
of IoT. Trying to use traditional IAM systems to reconcile heterogeneous
devices and complex federations of online services (e.g., IoT sensors and cloud
computing solutions) adds a cumbersome architectural layer that can become hard
to maintain and act as a single point of failure. In this paper, we propose
UniquID, a blockchain-based solution that overcomes the need for centralized
IAM architectures while providing scalability and robustness. We also present
the experimental results of a proof-of-concept UniquID enrolment network, and
we discuss two different use-cases that show the considerable value of a
blockchain-based IAM.Comment: 15 pages, 10 figure
Multiscale Analysis in Momentum Space for Quasi-periodic Potential in Dimension Two
We consider a polyharmonic operator H=(-\Delta)^l+V(\x) in dimension two
with , being an integer, and a quasi-periodic potential V(\x).
We prove that the absolutely continuous spectrum of contains a semiaxis and
there is a family of generalized eigenfunctions at every point of this semiaxis
with the following properties. First, the eigenfunctions are close to plane
waves at the high energy region. Second, the isoenergetic
curves in the space of momenta \k corresponding to these eigenfunctions have
a form of slightly distorted circles with holes (Cantor type structure). A new
method of multiscale analysis in the momentum space is developed to prove these
results.Comment: 125 pages, 4 figures. arXiv admin note: incorporates arXiv:1205.118
- …